Nuprl Lemma : lattice-join-is-lub
∀l:Lattice. ∀a,b:Point(l).  least-upper-bound(Point(l);x,y.x ≤ y;a;b;a ∨ b)
Proof
Definitions occuring in Statement : 
lattice-le: a ≤ b
, 
lattice: Lattice
, 
lattice-join: a ∨ b
, 
lattice-point: Point(l)
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
least-upper-bound: least-upper-bound(T;x,y.R[x; y];a;b;c)
, 
and: P ∧ Q
, 
lattice-le: a ≤ b
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
lattice: Lattice
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lattice_properties, 
equal_wf, 
lattice-point_wf, 
lattice-meet_wf, 
lattice_wf, 
lattice-join_wf, 
lattice-le-iff, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lattice-structure_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
equalitySymmetry, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
because_Cache, 
hyp_replacement, 
applyLambdaEquality, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}l:Lattice.  \mforall{}a,b:Point(l).    least-upper-bound(Point(l);x,y.x  \mleq{}  y;a;b;a  \mvee{}  b)
Date html generated:
2020_05_20-AM-08_25_31
Last ObjectModification:
2017_07_28-AM-09_12_53
Theory : lattices
Home
Index