Nuprl Lemma : filter2_functionality
∀[A:Type]. ∀[L:A List]. ∀[f1,f2:ℕ||L|| ⟶ 𝔹].
  filter2(f2;L) = filter2(f1;L) ∈ (A List) supposing f1 = f2 ∈ (ℕ||L|| ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
filter2: filter2(P;L)
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
equal_wf, 
int_seg_wf, 
length_wf, 
bool_wf, 
filter2_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
natural_numberEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
equalitySymmetry, 
universeIsType, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
inhabitedIsType, 
because_Cache, 
functionIsType, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[f1,f2:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].    filter2(f2;L)  =  filter2(f1;L)  supposing  f1  =  f2
Date html generated:
2019_10_15-AM-10_55_07
Last ObjectModification:
2018_09_27-AM-10_45_27
Theory : list!
Home
Index