Nuprl Lemma : filter2_functionality

[A:Type]. ∀[L:A List]. ∀[f1,f2:ℕ||L|| ⟶ 𝔹].
  filter2(f2;L) filter2(f1;L) ∈ (A List) supposing f1 f2 ∈ (ℕ||L|| ⟶ 𝔹)


Proof




Definitions occuring in Statement :  filter2: filter2(P;L) length: ||as|| list: List int_seg: {i..j-} bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q prop:
Lemmas referenced :  and_wf equal_wf int_seg_wf length_wf bool_wf filter2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality hypothesis independent_pairFormation hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality applyLambdaEquality setElimination rename productElimination equalitySymmetry universeIsType sqequalRule isect_memberEquality axiomEquality equalityTransitivity inhabitedIsType because_Cache functionIsType universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List].  \mforall{}[f1,f2:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].    filter2(f2;L)  =  filter2(f1;L)  supposing  f1  =  f2



Date html generated: 2019_10_15-AM-10_55_07
Last ObjectModification: 2018_09_27-AM-10_45_27

Theory : list!


Home Index