Nuprl Lemma : filter2_wf
∀[T:Type]. ∀[L:T List]. ∀[P:ℕ||L|| ⟶ 𝔹].  (filter2(P;L) ∈ T List)
Proof
Definitions occuring in Statement : 
filter2: filter2(P;L), 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
filter2: filter2(P;L), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
reduce2_wf, 
list_wf, 
nil_wf, 
false_wf, 
le_wf, 
int_seg_wf, 
length_wf, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
lelt_wf, 
bool_wf, 
eqtt_to_assert, 
cons_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
lambdaFormation, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
pointwiseFunctionality, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
imageElimination, 
baseClosed, 
baseApply, 
closedConclusion, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
equalityElimination, 
independent_functionElimination, 
addEquality, 
axiomEquality, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].    (filter2(P;L)  \mmember{}  T  List)
Date html generated:
2017_10_01-AM-08_35_05
Last ObjectModification:
2017_07_26-PM-04_25_41
Theory : list!
Home
Index