Nuprl Lemma : filter2_wf

[T:Type]. ∀[L:T List]. ∀[P:ℕ||L|| ⟶ 𝔹].  (filter2(P;L) ∈ List)


Proof




Definitions occuring in Statement :  filter2: filter2(P;L) length: ||as|| list: List int_seg: {i..j-} bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  filter2: filter2(P;L) uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: int_seg: {i..j-} lelt: i ≤ j < k all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  reduce2_wf list_wf nil_wf false_wf le_wf int_seg_wf length_wf decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf lelt_wf bool_wf eqtt_to_assert cons_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis because_Cache dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation lambdaEquality applyEquality functionExtensionality setElimination rename productElimination dependent_functionElimination unionElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp imageElimination baseClosed baseApply closedConclusion independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityElimination independent_functionElimination addEquality axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbB{}].    (filter2(P;L)  \mmember{}  T  List)



Date html generated: 2017_10_01-AM-08_35_05
Last ObjectModification: 2017_07_26-PM-04_25_41

Theory : list!


Home Index