Nuprl Lemma : matrix-scalar-mul-1
∀[n,m:ℕ]. ∀[r:Rng]. ∀[M:Matrix(n;m;r)].  (1*M = M ∈ Matrix(n;m;r))
Proof
Definitions occuring in Statement : 
matrix-scalar-mul: k*M
, 
matrix: Matrix(n;m;r)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_one: 1
Definitions unfolded in proof : 
rng: Rng
, 
nat: ℕ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
matrix-ap: M[i,j]
, 
matrix: Matrix(n;m;r)
, 
matrix-scalar-mul: k*M
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
nat_wf, 
rng_wf, 
matrix_wf, 
int_seg_wf, 
matrix_ap_mx_lemma, 
matrix-ap_wf, 
rng_car_wf, 
equal_wf, 
squash_wf, 
true_wf, 
rng_times_one, 
iff_weakening_equal
Rules used in proof : 
axiomEquality, 
hypothesisEquality, 
because_Cache, 
rename, 
setElimination, 
natural_numberEquality, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
functionExtensionality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
productElimination, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[n,m:\mBbbN{}].  \mforall{}[r:Rng].  \mforall{}[M:Matrix(n;m;r)].    (1*M  =  M)
Date html generated:
2018_05_21-PM-09_38_28
Last ObjectModification:
2017_12_14-PM-01_35_28
Theory : matrices
Home
Index