Nuprl Lemma : mFOL-sequent-evidence_and
From uniform evidence that hyps ⇒ x and 
uniform evidence that (y ∧ hyps) ⇒ y
we construct uniform evidence that hyps ⇒ x ∧ y⋅
∀hyps:mFOL() List. ∀[x,y:mFOL()].  (mFOL-sequent-evidence(<hyps, x>) ⇒ mFOL-sequent-evidence(<hyps, y>) ⇒ mFOL-sequent\000C-evidence(<hyps, x ∧ y>))
Proof
Definitions occuring in Statement : 
mFOL-sequent-evidence: mFOL-sequent-evidence(s), 
mFOconnect: mFOconnect(knd;left;right), 
mFOL: mFOL(), 
list: T List, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
pair: <a, b>, 
token: "$token"
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
mFOL-sequent-evidence: mFOL-sequent-evidence(s), 
mFO-uniform-evidence: mFO-uniform-evidence(vs;fmla), 
and: P ∧ Q, 
cand: A c∧ B, 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
mFOL-freevars: mFOL-freevars(fmla), 
mFOconnect: mFOconnect(knd;left;right), 
mFOL_ind: mFOL_ind, 
mFOL-sequent-abstract: mFOL-sequent-abstract(s), 
FOSatWith: Dom,S,a |= fmla, 
mFOL-abstract: mFOL-abstract(fmla), 
FOConnective: FOConnective(knd), 
eq_atom: x =a y, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
let: let, 
mFOL-sequent: mFOL-sequent()
Lemmas referenced : 
subtype_rel_FOAssignment, 
mFOL-sequent-freevars_wf, 
mFOconnect_wf, 
mFOL-sequent-freevars-subset-3, 
val-union-l-union, 
int-deq_wf, 
mFOL-freevars_wf, 
int-valueall-type, 
union-contains, 
union-contains2, 
tuple-type_wf, 
mFOL-hyps-meaning_wf, 
FOAssignment_wf, 
FOStruct_wf, 
mFOL-sequent-evidence_wf, 
list_wf, 
mFOL_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
applyEquality, 
lemma_by_obid, 
independent_pairEquality, 
tokenEquality, 
because_Cache, 
sqequalRule, 
independent_isectElimination, 
independent_functionElimination, 
intEquality, 
independent_pairFormation, 
productElimination, 
universeEquality, 
lambdaEquality, 
productEquality
Latex:
\mforall{}hyps:mFOL()  List.  \mforall{}[x,y:mFOL()].    (mFOL-sequent-evidence(<hyps,  x>)  {}\mRightarrow{}  mFOL-sequent-evidence(<hyps,\000C  y>)  {}\mRightarrow{}  mFOL-sequent-evidence(<hyps,  x  \mwedge{}  y>))
Date html generated:
2016_07_08-PM-05_21_59
Last ObjectModification:
2015_12_27-PM-06_25_33
Theory : minimal-first-order-logic
Home
Index