Nuprl Lemma : A-rightunit'
∀Val:Type. ∀n:ℕ. ∀AType:array{i:l}(Val;n). ∀T:Type. ∀m:A-map'(array-model(AType)) T.
  ((A-bind'(array-model(AType)) m A-return'(array-model(AType))) = m ∈ (A-map'(array-model(AType)) T))
Proof
Definitions occuring in Statement : 
A-bind': A-bind'(AModel)
, 
A-return': A-return'(AModel)
, 
A-map': A-map'(AModel)
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
nat: ℕ
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
array-model: array-model(AType)
, 
A-return': A-return'(AModel)
, 
A-bind': A-bind'(AModel)
, 
A-map': A-map'(AModel)
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
M-map_wf, 
array-monad'_wf, 
M-rightunit, 
iff_weakening_equal, 
array_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}Val:Type.  \mforall{}n:\mBbbN{}.  \mforall{}AType:array\{i:l\}(Val;n).  \mforall{}T:Type.  \mforall{}m:A-map'(array-model(AType))  T.
    ((A-bind'(array-model(AType))  m  A-return'(array-model(AType)))  =  m)
Date html generated:
2017_10_01-AM-08_44_08
Last ObjectModification:
2017_07_26-PM-04_30_08
Theory : monads
Home
Index