Nuprl Lemma : Pascal-completion_wf

[r:CRng]. ∀[f,g:PowerSeries(r)]. ∀[x,y:Atom].  (Pascal-completion(r;f;g;x;y) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  Pascal-completion: Pascal-completion(r;f;g;x;y) power-series: PowerSeries(X;r) uall: [x:A]. B[x] member: t ∈ T atom: Atom crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T Pascal-completion: Pascal-completion(r;f;g;x;y) uimplies: supposing a
Lemmas referenced :  fps-mul_wf atom-valueall-type atom-deq_wf fps-sub_wf fps-add_wf fps-one_wf fps-atom_wf fps-elim-x_wf fps-pascal_wf power-series_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin atomEquality independent_isectElimination hypothesis hypothesisEquality because_Cache axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(r)].  \mforall{}[x,y:Atom].    (Pascal-completion(r;f;g;x;y)  \mmember{}  PowerSeries(r))



Date html generated: 2016_05_15-PM-09_59_09
Last ObjectModification: 2015_12_27-PM-04_35_09

Theory : power!series


Home Index