Step
*
2
1
1
3
1
1
1
1
1
of Lemma
fps-compose-atom-neq
1. X : Type
2. {} ∈ bag(bag(X) List+)
3. valueall-type(X)
4. eq : EqDecider(X)
5. r : CRng
6. x : X
7. y : X
8. ¬(x = y ∈ X)
9. f : PowerSeries(X;r)
10. Comm(|r|;+r)
11. Assoc(|r|;*)
12. Comm(|r|;*)
13. IsMonoid(|r|;+r;0)
14. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
15. b : bag(X)
16. u : bag(X)
17. (||[]|| + 1) ≥ 1
18. ¬x ↓∈ hd([u])
19. (∀x∈tl([u]).¬(x = {} ∈ bag(X)))
20. bag-union([u]) = b ∈ bag(X)
21. (u + bag-rep(||[]||;x)) = {y} ∈ bag(X)
22. (||[]|| + 1) ≥ 1
23. u = {y} ∈ bag(X)
24. bag-rep(||[]||;x) = {} ∈ bag(X)
25. ||[]|| = 0 ∈ ℤ
⊢ [{y}] ↓∈ if bag-null(bag-union([{y}])) then {}
if bag-eq(eq;bag-union([{y}]);{y}) then {[{y}]}
else {}
fi
BY
{ Subst' bag-null(bag-union([{y}])) ~ ff 0 }
1
.....equality.....
1. X : Type
2. {} ∈ bag(bag(X) List+)
3. valueall-type(X)
4. eq : EqDecider(X)
5. r : CRng
6. x : X
7. y : X
8. ¬(x = y ∈ X)
9. f : PowerSeries(X;r)
10. Comm(|r|;+r)
11. Assoc(|r|;*)
12. Comm(|r|;*)
13. IsMonoid(|r|;+r;0)
14. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
15. b : bag(X)
16. u : bag(X)
17. (||[]|| + 1) ≥ 1
18. ¬x ↓∈ hd([u])
19. (∀x∈tl([u]).¬(x = {} ∈ bag(X)))
20. bag-union([u]) = b ∈ bag(X)
21. (u + bag-rep(||[]||;x)) = {y} ∈ bag(X)
22. (||[]|| + 1) ≥ 1
23. u = {y} ∈ bag(X)
24. bag-rep(||[]||;x) = {} ∈ bag(X)
25. ||[]|| = 0 ∈ ℤ
⊢ bag-null(bag-union([{y}])) ~ ff
2
1. X : Type
2. {} ∈ bag(bag(X) List+)
3. valueall-type(X)
4. eq : EqDecider(X)
5. r : CRng
6. x : X
7. y : X
8. ¬(x = y ∈ X)
9. f : PowerSeries(X;r)
10. Comm(|r|;+r)
11. Assoc(|r|;*)
12. Comm(|r|;*)
13. IsMonoid(|r|;+r;0)
14. ∀L:bag(X) List+. (Πa ∈ tl(L). f a ∈ |r|)
15. b : bag(X)
16. u : bag(X)
17. (||[]|| + 1) ≥ 1
18. ¬x ↓∈ hd([u])
19. (∀x∈tl([u]).¬(x = {} ∈ bag(X)))
20. bag-union([u]) = b ∈ bag(X)
21. (u + bag-rep(||[]||;x)) = {y} ∈ bag(X)
22. (||[]|| + 1) ≥ 1
23. u = {y} ∈ bag(X)
24. bag-rep(||[]||;x) = {} ∈ bag(X)
25. ||[]|| = 0 ∈ ℤ
⊢ [{y}] ↓∈ if ff then {}
if bag-eq(eq;bag-union([{y}]);{y}) then {[{y}]}
else {}
fi
Latex:
Latex:
1. X : Type
2. \{\} \mmember{} bag(bag(X) List\msupplus{})
3. valueall-type(X)
4. eq : EqDecider(X)
5. r : CRng
6. x : X
7. y : X
8. \mneg{}(x = y)
9. f : PowerSeries(X;r)
10. Comm(|r|;+r)
11. Assoc(|r|;*)
12. Comm(|r|;*)
13. IsMonoid(|r|;+r;0)
14. \mforall{}L:bag(X) List\msupplus{}. (\mPi{}a \mmember{} tl(L). f a \mmember{} |r|)
15. b : bag(X)
16. u : bag(X)
17. (||[]|| + 1) \mgeq{} 1
18. \mneg{}x \mdownarrow{}\mmember{} hd([u])
19. (\mforall{}x\mmember{}tl([u]).\mneg{}(x = \{\}))
20. bag-union([u]) = b
21. (u + bag-rep(||[]||;x)) = \{y\}
22. (||[]|| + 1) \mgeq{} 1
23. u = \{y\}
24. bag-rep(||[]||;x) = \{\}
25. ||[]|| = 0
\mvdash{} [\{y\}] \mdownarrow{}\mmember{} if bag-null(bag-union([\{y\}])) then \{\}
if bag-eq(eq;bag-union([\{y\}]);\{y\}) then \{[\{y\}]\}
else \{\}
fi
By
Latex:
Subst' bag-null(bag-union([\{y\}])) \msim{} ff 0
Home
Index