Nuprl Lemma : fps-elim-x-add

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X]. ∀[f,g:PowerSeries(X;r)].  ((f+g)(x:=0) (f(x:=0)+g(x:=0)) ∈ PowerSeries(X;r)) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-elim-x: f(x:=0) fps-add: (f+g) power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y fps-elim-x: f(x:=0) and: P ∧ Q
Lemmas referenced :  fps-elim-hom crng_wf deq_wf power-series_wf valueall-type_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality introduction independent_isectElimination sqequalRule productElimination isect_memberEquality axiomEquality universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].  \mforall{}[f,g:PowerSeries(X;r)].
        ((f+g)(x:=0)  =  (f(x:=0)+g(x:=0))) 
    supposing  valueall-type(X)



Date html generated: 2016_05_15-PM-09_53_23
Last ObjectModification: 2015_12_27-PM-04_37_52

Theory : power!series


Home Index