Nuprl Lemma : fps-elim-hom

[X:Type]
  ∀[eq:EqDecider(X)]. ∀[r:CRng]. ∀[x:X].
    (FunThru2op(PowerSeries(X;r);PowerSeries(X;r);λf,g. (f+g);λf,g. (f+g);fps-elim(x))
    ∧ FunThru2op(PowerSeries(X;r);PowerSeries(X;r);λf,g. (f*g);λf,g. (f*g);fps-elim(x))
    ∧ ((fps-elim(x) 1) 1 ∈ PowerSeries(X;r))) 
  supposing valueall-type(X)


Proof




Definitions occuring in Statement :  fps-elim: fps-elim(x) fps-mul: (f*g) fps-add: (f+g) fps-one: 1 power-series: PowerSeries(X;r) deq: EqDecider(T) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] and: P ∧ Q apply: a lambda: λx.A[x] universe: Type equal: t ∈ T crng: CRng fun_thru_2op: FunThru2op(A;B;opa;opb;f)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B fun_thru_2op: FunThru2op(A;B;opa;opb;f) infix_ap: y uiff: uiff(P;Q) all: x:A. B[x] fps-elim: fps-elim(x) fps-add: (f+g) fps-coeff: f[b] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A crng: CRng rng: Rng power-series: PowerSeries(X;r) fps-mul: (f*g) fps-one: 1 true: True squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] pi1: fst(t) pi2: snd(t) so_apply: x[s] sq_or: a ↓∨ b ring_p: IsRing(T;plus;zero;neg;times;one) group_p: IsGroup(T;op;id;inv) top: Top
Lemmas referenced :  fps-ext fps-elim_wf fps-add_wf bag-deq-member_wf bool_wf eqtt_to_assert assert-bag-deq-member eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot bag-member_wf rng_plus_wf bag_wf power-series_wf fps-mul_wf fps-one_wf bag-null_wf assert-bag-null bag-member-empty-iff equal-wf-T-base rng_zero_wf rng_one_wf crng_wf deq_wf valueall-type_wf rng_car_wf squash_wf true_wf rng_plus_zero iff_weakening_equal bag-summation-is-zero bag-partitions_wf rng_times_wf rng_plus_comm2 bag-member-partitions rng_times_zero bag-member-append crng_properties rng_properties bag-summation-equal pi1_wf_top pi2_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality applyEquality cumulativity hypothesis productElimination independent_isectElimination lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate independent_functionElimination voidElimination setElimination rename isect_memberEquality axiomEquality independent_pairFormation hyp_replacement applyLambdaEquality baseClosed independent_pairEquality universeEquality natural_numberEquality lambdaEquality imageElimination imageMemberEquality productEquality voidEquality inlFormation inrFormation

Latex:
\mforall{}[X:Type]
    \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].  \mforall{}[x:X].
        (FunThru2op(PowerSeries(X;r);PowerSeries(X;r);\mlambda{}f,g.  (f+g);\mlambda{}f,g.  (f+g);fps-elim(x))
        \mwedge{}  FunThru2op(PowerSeries(X;r);PowerSeries(X;r);\mlambda{}f,g.  (f*g);\mlambda{}f,g.  (f*g);fps-elim(x))
        \mwedge{}  ((fps-elim(x)  1)  =  1)) 
    supposing  valueall-type(X)



Date html generated: 2018_05_21-PM-09_59_09
Last ObjectModification: 2017_07_26-PM-06_33_41

Theory : power!series


Home Index