Nuprl Lemma : fps-moebius_wf

[X:Type]. ∀[eq:EqDecider(X)]. ∀[r:CRng].  (fps-moebius(eq;r) ∈ PowerSeries(X;r))


Proof




Definitions occuring in Statement :  fps-moebius: fps-moebius(eq;r) power-series: PowerSeries(X;r) deq: EqDecider(T) uall: [x:A]. B[x] member: t ∈ T universe: Type crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fps-moebius: fps-moebius(eq;r) power-series: PowerSeries(X;r) has-value: (a)↓ uimplies: supposing a crng: CRng
Lemmas referenced :  value-type-has-value int-value-type bag-moebius_wf int-to-ring_wf bag_wf crng_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality callbyvalueReduce lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality independent_isectElimination hypothesis hypothesisEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[eq:EqDecider(X)].  \mforall{}[r:CRng].    (fps-moebius(eq;r)  \mmember{}  PowerSeries(X;r))



Date html generated: 2016_05_15-PM-09_48_53
Last ObjectModification: 2015_12_27-PM-04_40_42

Theory : power!series


Home Index