Nuprl Lemma : fps-non-trivial

[X:Type]. ∀[r:CRng].  ¬(1 0 ∈ PowerSeries(X;r)) supposing ¬(1 0 ∈ |r|)


Proof




Definitions occuring in Statement :  fps-one: 1 fps-zero: 0 power-series: PowerSeries(X;r) uimplies: supposing a uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T crng: CRng rng_one: 1 rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a not: ¬A implies:  Q false: False and: P ∧ Q prop: crng: CRng rng: Rng empty-bag: {} fps-zero: 0 fps-coeff: f[b] fps-one: 1 bag-null: bag-null(bs) null: null(as) nil: [] it: btrue: tt ifthenelse: if then else fi 
Lemmas referenced :  and_wf equal_wf power-series_wf fps-coeff_wf empty-bag_wf fps-one_wf fps-zero_wf not_wf rng_car_wf rng_one_wf rng_zero_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin sqequalHypSubstitution independent_functionElimination equalitySymmetry dependent_set_memberEquality hypothesis independent_pairFormation equalityTransitivity extract_by_obid isectElimination hypothesisEquality applyLambdaEquality setElimination rename productElimination voidElimination because_Cache cumulativity sqequalRule lambdaEquality dependent_functionElimination isect_memberEquality universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].    \mneg{}(1  =  0)  supposing  \mneg{}(1  =  0)



Date html generated: 2018_05_21-PM-09_54_47
Last ObjectModification: 2017_07_26-PM-06_32_33

Theory : power!series


Home Index