Nuprl Lemma : fps-non-trivial
∀[X:Type]. ∀[r:CRng].  ¬(1 = 0 ∈ PowerSeries(X;r)) supposing ¬(1 = 0 ∈ |r|)
Proof
Definitions occuring in Statement : 
fps-one: 1
, 
fps-zero: 0
, 
power-series: PowerSeries(X;r)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_one: 1
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
crng: CRng
, 
rng: Rng
, 
empty-bag: {}
, 
fps-zero: 0
, 
fps-coeff: f[b]
, 
fps-one: 1
, 
bag-null: bag-null(bs)
, 
null: null(as)
, 
nil: []
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
Lemmas referenced : 
and_wf, 
equal_wf, 
power-series_wf, 
fps-coeff_wf, 
empty-bag_wf, 
fps-one_wf, 
fps-zero_wf, 
not_wf, 
rng_car_wf, 
rng_one_wf, 
rng_zero_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
sqequalHypSubstitution, 
independent_functionElimination, 
equalitySymmetry, 
dependent_set_memberEquality, 
hypothesis, 
independent_pairFormation, 
equalityTransitivity, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyLambdaEquality, 
setElimination, 
rename, 
productElimination, 
voidElimination, 
because_Cache, 
cumulativity, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[r:CRng].    \mneg{}(1  =  0)  supposing  \mneg{}(1  =  0)
Date html generated:
2018_05_21-PM-09_54_47
Last ObjectModification:
2017_07_26-PM-06_32_33
Theory : power!series
Home
Index