Nuprl Lemma : rv-disjoint-const

p:FinProbSpace. ∀n:ℕ. ∀X:RandomVariable(p;n). ∀a:ℚ.  rv-disjoint(p;n;a;X)


Proof




Definitions occuring in Statement :  rv-disjoint: rv-disjoint(p;n;X;Y) rv-const: a random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace rationals: nat: all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] rv-disjoint: rv-disjoint(p;n;X;Y) or: P ∨ Q implies:  Q rv-const: a prop: nat: so_lambda: λ2x.t[x] int_seg: {i..j-} so_apply: x[s] random-variable: RandomVariable(p;n) subtype_rel: A ⊆B p-outcome: Outcome
Lemmas referenced :  rationals_wf random-variable_wf nat_wf finite-prob-space_wf all_wf int_seg_wf not_wf equal_wf p-outcome_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality inlFormation sqequalRule natural_numberEquality setElimination rename lambdaEquality functionEquality intEquality applyEquality functionExtensionality because_Cache

Latex:
\mforall{}p:FinProbSpace.  \mforall{}n:\mBbbN{}.  \mforall{}X:RandomVariable(p;n).  \mforall{}a:\mBbbQ{}.    rv-disjoint(p;n;a;X)



Date html generated: 2018_05_22-AM-00_35_16
Last ObjectModification: 2017_07_26-PM-07_00_06

Theory : randomness


Home Index