Nuprl Lemma : int-has-rational-square-root
∀n:ℤ. (∃q:ℚ. ((q * q) = n ∈ ℚ) 
⇐⇒ ∃m:ℤ. ((m * m) = n ∈ ℤ))
Proof
Definitions occuring in Statement : 
qmul: r * s
, 
rationals: ℚ
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
guard: {T}
Lemmas referenced : 
exists_wf, 
rationals_wf, 
equal_wf, 
qmul_wf, 
int-subtype-rationals, 
int-with-rational-square-root, 
equal_functionality_wrt_subtype_rel2, 
qmul-mul
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
intEquality, 
multiplyEquality, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}n:\mBbbZ{}.  (\mexists{}q:\mBbbQ{}.  ((q  *  q)  =  n)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}m:\mBbbZ{}.  ((m  *  m)  =  n))
Date html generated:
2016_05_15-PM-11_44_27
Last ObjectModification:
2015_12_27-PM-07_24_57
Theory : rationals
Home
Index