Nuprl Lemma : int-with-rational-square-root

n:ℤ. ∀q:ℚ.  (((q q) n ∈ ℚ (∃m:ℤ((m m) n ∈ ℤ)))


Proof




Definitions occuring in Statement :  qmul: s rationals: all: x:A. B[x] exists: x:A. B[x] implies:  Q multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B squash: T prop: true: True uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q pi1: fst(t) pi2: snd(t) mk-rational: mk-rational(a;b) rationals: quotient: x,y:A//B[x; y] nat_plus: + so_lambda: λ2x.t[x] so_apply: x[s] ifthenelse: if then else fi  bfalse: ff btrue: tt uiff: uiff(P;Q) exists: x:A. B[x] cand: c∧ B coprime: CoPrime(a,b) gcd_p: GCD(a;b;y) sq_type: SQType(T) not: ¬A false: False or: P ∨ Q divides: a decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) prime: prime(a) assoced: b int_upper: {i...} label: ...$L... t sq_exists: x:A [B[x]] cons: [a b] mul-list: Π(ns)  reduce: reduce(f;k;as) list_ind: list_ind
Lemmas referenced :  qmul_wf int-subtype-rationals rationals_wf istype-int equals-qrep qrep-coprime equal_wf squash_wf true_wf istype-universe subtype_rel_self iff_weakening_equal qrep_wf b-union_wf int_nzero_wf bool_wf qeq_wf2 mk-rational_wf nat_plus_inc_int_nzero btrue_wf set_subtype_base less_than_wf int_subtype_base qeq-elim qmul-elim eqtt_to_assert assert_of_eq_int coprime_wf one_divs_any divides_wf gcd_is_gcd absval_ifthenelse gcd_wf lt_int_wf subtype_base_sq assert_wf bnot_wf not_wf istype-less_than istype-assert istype-void divides_invar_2 bool_cases bool_subtype_base assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot prime_wf prime_divs_prod nat_plus_properties decidable__equal_int full-omega-unsat intformnot_wf intformeq_wf itermMultiply_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf nat_plus_wf decidable__equal_nat_plus decidable__lt intformless_wf itermConstant_wf int_formula_prop_less_lemma int_term_value_constant_lemma prime-factors decidable__le intformand_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_le_lemma istype-le set_wf int_upper_wf list-cases product_subtype_list mul_list_nil_lemma mul-list_wf subtype_rel_list istype-int_upper le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut equalityIstype inhabitedIsType hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis applyEquality sqequalRule universeIsType lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry instantiate universeEquality natural_numberEquality imageMemberEquality baseClosed because_Cache independent_isectElimination productElimination independent_functionElimination dependent_functionElimination pertypeElimination promote_hyp productIsType intEquality productEquality sqequalBase baseApply closedConclusion isintReduceTrue multiplyEquality setElimination rename dependent_pairFormation_alt independent_pairFormation cumulativity functionIsType unionElimination voidElimination approximateComputation int_eqEquality Error :memTop,  dependent_set_memberEquality_alt hypothesis_subsumption setEquality setIsType

Latex:
\mforall{}n:\mBbbZ{}.  \mforall{}q:\mBbbQ{}.    (((q  *  q)  =  n)  {}\mRightarrow{}  (\mexists{}m:\mBbbZ{}.  ((m  *  m)  =  n)))



Date html generated: 2020_05_20-AM-09_31_06
Last ObjectModification: 2020_01_01-AM-11_44_42

Theory : rationals


Home Index