Nuprl Lemma : int-rational
∀[n:ℤ]. (n ∈ ℚ)
Proof
Definitions occuring in Statement : 
rationals: ℚ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
rationals: ℚ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
b-union_wf, 
int_nzero_wf, 
equal-wf-T-base, 
bool_wf, 
qeq_wf, 
qeq-equiv, 
subtype_rel_b-union-left, 
equal_wf, 
squash_wf, 
true_wf, 
qeq_refl, 
btrue_wf, 
iff_weakening_equal, 
quotient-member-eq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
extract_by_obid, 
isectElimination, 
thin, 
productEquality, 
lambdaEquality, 
hypothesisEquality, 
baseClosed, 
applyEquality, 
because_Cache, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}[n:\mBbbZ{}].  (n  \mmember{}  \mBbbQ{})
Date html generated:
2018_05_21-PM-11_44_08
Last ObjectModification:
2017_07_26-PM-06_42_59
Theory : rationals
Home
Index