Nuprl Lemma : qabs-positive

[r:ℚ]. 0 < |r| supposing ¬(r 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qabs: |r| qless: r < s rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  qpositive-qabs qless_witness int-subtype-rationals qabs_wf not_wf equal_wf rationals_wf assert-qpositive
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis natural_numberEquality applyEquality sqequalRule independent_functionElimination because_Cache isect_memberEquality equalityTransitivity equalitySymmetry productElimination

Latex:
\mforall{}[r:\mBbbQ{}].  0  <  |r|  supposing  \mneg{}(r  =  0)



Date html generated: 2016_05_15-PM-10_55_12
Last ObjectModification: 2015_12_27-PM-07_52_39

Theory : rationals


Home Index