Nuprl Lemma : qdiv-self

[r:ℚ]. (r/r) 1 ∈ ℚ supposing ¬(r 0 ∈ ℚ)


Proof




Definitions occuring in Statement :  qdiv: (r/s) rationals: uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a qdiv: (r/s) prop: subtype_rel: A ⊆B
Lemmas referenced :  not_wf equal_wf rationals_wf int-subtype-rationals qmul_inv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality applyEquality sqequalRule isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[r:\mBbbQ{}].  (r/r)  =  1  supposing  \mneg{}(r  =  0)



Date html generated: 2016_05_15-PM-10_43_51
Last ObjectModification: 2015_12_27-PM-07_55_31

Theory : rationals


Home Index