Nuprl Lemma : qdiv-self
∀[r:ℚ]. (r/r) = 1 ∈ ℚ supposing ¬(r = 0 ∈ ℚ)
Proof
Definitions occuring in Statement : 
qdiv: (r/s)
, 
rationals: ℚ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
qdiv: (r/s)
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
not_wf, 
equal_wf, 
rationals_wf, 
int-subtype-rationals, 
qmul_inv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[r:\mBbbQ{}].  (r/r)  =  1  supposing  \mneg{}(r  =  0)
Date html generated:
2016_05_15-PM-10_43_51
Last ObjectModification:
2015_12_27-PM-07_55_31
Theory : rationals
Home
Index