Nuprl Lemma : rat-complex-iter-subdiv_wf

[k,n:ℕ]. ∀[K:n-dim-complex]. ∀[j:ℕ].  (K'^(j) ∈ n-dim-complex)


Proof




Definitions occuring in Statement :  rat-complex-iter-subdiv: K'^(n) rational-cube-complex: n-dim-complex nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rat-complex-iter-subdiv: K'^(n) nat:
Lemmas referenced :  primrec_wf rational-cube-complex_wf rat-complex-subdiv_wf int_seg_wf istype-nat
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality_alt because_Cache universeIsType natural_numberEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].  \mforall{}[j:\mBbbN{}].    (K'\^{}(j)  \mmember{}  n-dim-complex)



Date html generated: 2020_05_20-AM-09_24_16
Last ObjectModification: 2019_10_31-AM-10_05_08

Theory : rationals


Home Index