Nuprl Lemma : rat-complex-iter-subdiv_wf
∀[k,n:ℕ]. ∀[K:n-dim-complex]. ∀[j:ℕ].  (K'^(j) ∈ n-dim-complex)
Proof
Definitions occuring in Statement : 
rat-complex-iter-subdiv: K'^(n)
, 
rational-cube-complex: n-dim-complex
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-complex-iter-subdiv: K'^(n)
, 
nat: ℕ
Lemmas referenced : 
primrec_wf, 
rational-cube-complex_wf, 
rat-complex-subdiv_wf, 
int_seg_wf, 
istype-nat
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality_alt, 
because_Cache, 
universeIsType, 
natural_numberEquality, 
setElimination, 
rename, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:n-dim-complex].  \mforall{}[j:\mBbbN{}].    (K'\^{}(j)  \mmember{}  n-dim-complex)
Date html generated:
2020_05_20-AM-09_24_16
Last ObjectModification:
2019_10_31-AM-10_05_08
Theory : rationals
Home
Index