Nuprl Lemma : rational-form-has-value
∀[r:ℤ ⋃ (ℤ × ℤ-o)]. has-valueall(r)
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
has-valueall: has-valueall(a)
, 
b-union: A ⋃ B
, 
uall: ∀[x:A]. B[x]
, 
product: x:A × B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
int_nzero: ℤ-o
, 
has-valueall: has-valueall(a)
, 
has-value: (a)↓
Lemmas referenced : 
valueall-type-has-valueall, 
b-union_wf, 
int_nzero_wf, 
bunion-valueall-type, 
int-valueall-type, 
product-valueall-type, 
set-valueall-type, 
nequal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
productEquality, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
lambdaFormation, 
hypothesisEquality, 
natural_numberEquality, 
axiomSqleEquality
Latex:
\mforall{}[r:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].  has-valueall(r)
Date html generated:
2016_05_15-PM-10_37_09
Last ObjectModification:
2015_12_27-PM-08_00_42
Theory : rationals
Home
Index