Nuprl Lemma : rational-form-has-value

[r:ℤ ⋃ (ℤ × ℤ-o)]. has-valueall(r)


Proof




Definitions occuring in Statement :  int_nzero: -o has-valueall: has-valueall(a) b-union: A ⋃ B uall: [x:A]. B[x] product: x:A × B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] implies:  Q all: x:A. B[x] int_nzero: -o has-valueall: has-valueall(a) has-value: (a)↓
Lemmas referenced :  valueall-type-has-valueall b-union_wf int_nzero_wf bunion-valueall-type int-valueall-type product-valueall-type set-valueall-type nequal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality productEquality hypothesis independent_isectElimination because_Cache sqequalRule lambdaEquality independent_functionElimination lambdaFormation hypothesisEquality natural_numberEquality axiomSqleEquality

Latex:
\mforall{}[r:\mBbbZ{}  \mcup{}  (\mBbbZ{}  \mtimes{}  \mBbbZ{}\msupminus{}\msupzero{})].  has-valueall(r)



Date html generated: 2016_05_15-PM-10_37_09
Last ObjectModification: 2015_12_27-PM-08_00_42

Theory : rationals


Home Index