Nuprl Lemma : cat-initial_wf
∀[C:SmallCategory]. ∀[i:cat-ob(C)].  (Initial(i) ∈ ℙ)
Proof
Definitions occuring in Statement : 
cat-initial: Initial(i)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cat-initial: Initial(i)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
cat-ob_wf, 
cat-arrow_wf, 
equal_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
productEquality, 
applyEquality, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[i:cat-ob(C)].    (Initial(i)  \mmember{}  \mBbbP{})
Date html generated:
2020_05_20-AM-07_50_34
Last ObjectModification:
2017_01_09-AM-09_52_17
Theory : small!categories
Home
Index