Nuprl Lemma : mk-nat-trans_wf
∀[C,D:SmallCategory]. ∀[F,G:Functor(C;D)]. ∀[trans:A:cat-ob(C) ⟶ (cat-arrow(D) (F A) (G A))].
  x |→ trans[x] ∈ nat-trans(C;D;F;G) 
  supposing ∀A,B:cat-ob(C). ∀g:cat-arrow(C) A B.
              ((cat-comp(D) (F A) (G A) (G B) trans[A] (G A B g))
              = (cat-comp(D) (F A) (F B) (G B) (F A B g) trans[B])
              ∈ (cat-arrow(D) (F A) (G B)))
Proof
Definitions occuring in Statement : 
mk-nat-trans: x |→ T[x]
, 
nat-trans: nat-trans(C;D;F;G)
, 
functor-arrow: arrow(F)
, 
functor-ob: ob(F)
, 
cat-functor: Functor(C1;C2)
, 
cat-comp: cat-comp(C)
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
nat-trans: nat-trans(C;D;F;G)
, 
mk-nat-trans: x |→ T[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
cat-ob_wf, 
cat-arrow_wf, 
functor-ob_wf, 
cat-comp_wf, 
functor-arrow_wf, 
cat-functor_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
functionIsType, 
because_Cache, 
equalityIstype, 
inhabitedIsType
Latex:
\mforall{}[C,D:SmallCategory].  \mforall{}[F,G:Functor(C;D)].  \mforall{}[trans:A:cat-ob(C)  {}\mrightarrow{}  (cat-arrow(D)  (F  A)  (G  A))].
    x  |\mrightarrow{}  trans[x]  \mmember{}  nat-trans(C;D;F;G) 
    supposing  \mforall{}A,B:cat-ob(C).  \mforall{}g:cat-arrow(C)  A  B.
                            ((cat-comp(D)  (F  A)  (G  A)  (G  B)  trans[A]  (G  A  B  g))
                            =  (cat-comp(D)  (F  A)  (F  B)  (G  B)  (F  A  B  g)  trans[B]))
Date html generated:
2020_05_20-AM-07_51_30
Last ObjectModification:
2019_12_30-PM-02_05_51
Theory : small!categories
Home
Index