Nuprl Lemma : monad-fun_wf

[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (M(x) ∈ cat-ob(C))


Proof




Definitions occuring in Statement :  monad-fun: M(x) cat-monad: Monad(C) cat-ob: cat-ob(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monad-fun: M(x)
Lemmas referenced :  functor-ob_wf monad-functor_wf cat-ob_wf cat-monad_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule applyEquality extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (M(x)  \mmember{}  cat-ob(C))



Date html generated: 2020_05_20-AM-07_58_43
Last ObjectModification: 2017_01_17-AM-11_32_46

Theory : small!categories


Home Index