Nuprl Lemma : monad-fun_wf
∀[C:SmallCategory]. ∀[M:Monad(C)]. ∀[x:cat-ob(C)].  (M(x) ∈ cat-ob(C))
Proof
Definitions occuring in Statement : 
monad-fun: M(x)
, 
cat-monad: Monad(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monad-fun: M(x)
Lemmas referenced : 
functor-ob_wf, 
monad-functor_wf, 
cat-ob_wf, 
cat-monad_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
applyEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].  \mforall{}[x:cat-ob(C)].    (M(x)  \mmember{}  cat-ob(C))
Date html generated:
2020_05_20-AM-07_58_43
Last ObjectModification:
2017_01_17-AM-11_32_46
Theory : small!categories
Home
Index