Nuprl Lemma : cat-monad_wf

[C:SmallCategory]. (Monad(C) ∈ Type)


Proof




Definitions occuring in Statement :  cat-monad: Monad(C) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] cat-monad: Monad(C) member: t ∈ T spreadn: spread3 nat-trans: nat-trans(C;D;F;G) functor-comp: functor-comp(F;G) all: x:A. B[x] top: Top so_lambda: so_lambda3 so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] id_functor: 1 and: P ∧ Q prop:
Lemmas referenced :  small-category_wf cat-functor_wf nat-trans_wf id_functor_wf functor-comp_wf ob_mk_functor_lemma arrow_mk_functor_lemma all_wf cat-ob_wf equal_wf cat-arrow_wf functor-ob_wf cat-comp_wf cat-id_wf functor-arrow_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation setEquality cut introduction extract_by_obid hypothesis productEquality sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination sqequalRule setElimination rename dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaEquality applyEquality because_Cache functionExtensionality

Latex:
\mforall{}[C:SmallCategory].  (Monad(C)  \mmember{}  Type)



Date html generated: 2020_05_20-AM-07_58_27
Last ObjectModification: 2017_01_16-PM-07_38_47

Theory : small!categories


Home Index