Nuprl Lemma : functor-comp_wf
∀[A,B,C:SmallCategory]. ∀[F:Functor(A;B)]. ∀[G:Functor(B;C)].  (functor-comp(F;G) ∈ Functor(A;C))
Proof
Definitions occuring in Statement : 
functor-comp: functor-comp(F;G)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
functor-comp: functor-comp(F;G)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: so_lambda3, 
so_apply: x[s1;s2;s3]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
mk-functor_wf, 
functor-ob_wf, 
cat-ob_wf, 
functor-arrow_wf, 
cat-arrow_wf, 
equal_wf, 
squash_wf, 
true_wf, 
functor-arrow-comp, 
cat-comp_wf, 
iff_weakening_equal, 
functor-arrow-id, 
cat-id_wf, 
cat-functor_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
independent_isectElimination, 
lambdaFormation, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
axiomEquality, 
isect_memberEquality
Latex:
\mforall{}[A,B,C:SmallCategory].  \mforall{}[F:Functor(A;B)].  \mforall{}[G:Functor(B;C)].    (functor-comp(F;G)  \mmember{}  Functor(A;C))
Date html generated:
2020_05_20-AM-07_53_21
Last ObjectModification:
2017_07_28-AM-09_19_40
Theory : small!categories
Home
Index