Nuprl Lemma : monad-functor_wf

[C:SmallCategory]. ∀[M:Monad(C)].  (monad-functor(M) ∈ Functor(C;C))


Proof




Definitions occuring in Statement :  monad-functor: monad-functor(M) cat-monad: Monad(C) cat-functor: Functor(C1;C2) small-category: SmallCategory uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T monad-functor: monad-functor(M) cat-monad: Monad(C) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a all: x:A. B[x] top: Top
Lemmas referenced :  pi1_wf_top cat-functor_wf subtype_rel_product nat-trans_wf id_functor_wf functor-comp_wf top_wf cat-monad_wf small-category_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename applyEquality lambdaEquality productEquality because_Cache independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].    (monad-functor(M)  \mmember{}  Functor(C;C))



Date html generated: 2020_05_20-AM-07_58_38
Last ObjectModification: 2017_01_17-AM-11_29_21

Theory : small!categories


Home Index