Nuprl Lemma : monad-functor_wf
∀[C:SmallCategory]. ∀[M:Monad(C)].  (monad-functor(M) ∈ Functor(C;C))
Proof
Definitions occuring in Statement : 
monad-functor: monad-functor(M)
, 
cat-monad: Monad(C)
, 
cat-functor: Functor(C1;C2)
, 
small-category: SmallCategory
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
monad-functor: monad-functor(M)
, 
cat-monad: Monad(C)
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
top: Top
Lemmas referenced : 
pi1_wf_top, 
cat-functor_wf, 
subtype_rel_product, 
nat-trans_wf, 
id_functor_wf, 
functor-comp_wf, 
top_wf, 
cat-monad_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
lambdaEquality, 
productEquality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[M:Monad(C)].    (monad-functor(M)  \mmember{}  Functor(C;C))
Date html generated:
2020_05_20-AM-07_58_38
Last ObjectModification:
2017_01_17-AM-11_29_21
Theory : small!categories
Home
Index