Nuprl Lemma : add-add-zero-in-top
∀[a,b:Top].  ((a + b) + 0 ~ a + b)
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x], 
top: Top, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
has-value: (a)↓, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
prop: ℙ, 
false: False
Lemmas referenced : 
value-type-has-value, 
int-value-type, 
equal_wf, 
add-zero, 
exception-not-value, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalSqle, 
sqleRule, 
thin, 
divergentSqle, 
callbyvalueAdd, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
intEquality, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
sqleReflexivity, 
addExceptionCases, 
axiomSqleEquality, 
natural_numberEquality, 
voidElimination, 
exceptionSqequal, 
addEquality, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[a,b:Top].    ((a  +  b)  +  0  \msim{}  a  +  b)
Date html generated:
2017_10_01-AM-08_43_29
Last ObjectModification:
2017_07_26-PM-04_29_48
Theory : untyped!computation
Home
Index