Nuprl Lemma : spread-decide
∀[x,d,F,G:Top].
  (let a,b = x 
   in case d[a;b] of inl(u) => F[a;b;u] | inr(u) => G[a;b;u] ~ case let a,b = x 
                                                                    in d[a;b]
   of inl(u) =>
   let a,b = x 
   in F[a;b;u]
   | inr(u) =>
   let a,b = x 
   in G[a;b;u])
Proof
Definitions occuring in Statement : 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s1;s2]
, 
spread: spread def, 
decide: case b of inl(x) => s[x] | inr(y) => t[y]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
member: t ∈ T
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict4: strict4(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
prop: ℙ
, 
guard: {T}
, 
or: P ∨ Q
, 
squash: ↓T
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
lifting-strict-spread, 
top_wf, 
equal_wf, 
has-value_wf_base, 
base_wf, 
is-exception_wf, 
pair-eta
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalTransitivity, 
computationStep, 
isectElimination, 
thin, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueDecide, 
hypothesis, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
unionEquality, 
unionElimination, 
sqleReflexivity, 
dependent_functionElimination, 
independent_functionElimination, 
baseApply, 
closedConclusion, 
decideExceptionCases, 
inrFormation, 
because_Cache, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inlFormation, 
sqequalSqle, 
sqleRule, 
divergentSqle, 
callbyvalueSpread, 
spreadExceptionCases, 
axiomSqleEquality, 
isect_memberFormation, 
sqequalAxiom
Latex:
\mforall{}[x,d,F,G:Top].
    (let  a,b  =  x 
      in  case  d[a;b]  of  inl(u)  =>  F[a;b;u]  |  inr(u)  =>  G[a;b;u]  \msim{}  case  let  a,b  =  x 
                                                                                                                                        in  d[a;b]
      of  inl(u)  =>
      let  a,b  =  x 
      in  F[a;b;u]
      |  inr(u)  =>
      let  a,b  =  x 
      in  G[a;b;u])
Date html generated:
2017_10_01-AM-08_39_24
Last ObjectModification:
2017_07_26-PM-04_27_28
Theory : untyped!computation
Home
Index