Nuprl Lemma : drng_properties

[r:DRng]. (IsRing(|r|;+r;0;-r;*;1) ∧ IsEqFun(|r|;=b))


Proof




Definitions occuring in Statement :  drng: DRng ring_p: IsRing(T;plus;zero;neg;times;one) rng_one: 1 rng_times: * rng_minus: -r rng_zero: 0 rng_plus: +r rng_eq: =b rng_car: |r| eqfun_p: IsEqFun(T;eq) uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B drng: DRng ring_p: IsRing(T;plus;zero;neg;times;one) prop: implies:  Q sq_stable: SqStable(P) monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) ident: Ident(T;op;id) bilinear: BiLinear(T;pl;tm) squash: T group_p: IsGroup(T;op;id;inv) inverse: Inverse(T;op;id;inv) eqfun_p: IsEqFun(T;eq) uiff: uiff(P;Q) uimplies: supposing a infix_ap: y
Lemmas referenced :  drng_wf equal_wf assert_witness assert_wf rng_eq_wf sq_stable__eqfun_p squash_wf sq_stable__bilinear sq_stable__monoid_p sq_stable__group_p bilinear_wf rng_one_wf rng_times_wf monoid_p_wf and_wf rng_minus_wf rng_zero_wf rng_plus_wf rng_car_wf group_p_wf sq_stable__and
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination hypothesisEquality hypothesis isect_memberEquality independent_functionElimination lambdaFormation because_Cache sqequalRule lambdaEquality dependent_functionElimination productElimination independent_pairEquality axiomEquality imageMemberEquality baseClosed imageElimination independent_pairFormation applyEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:DRng].  (IsRing(|r|;+r;0;-r;*;1)  \mwedge{}  IsEqFun(|r|;=\msubb{}))



Date html generated: 2016_05_15-PM-00_20_33
Last ObjectModification: 2016_01_15-AM-08_51_43

Theory : rings_1


Home Index