Nuprl Lemma : drng_properties
∀[r:DRng]. (IsRing(|r|;+r;0;-r;*;1) ∧ IsEqFun(|r|;=b))
Proof
Definitions occuring in Statement : 
drng: DRng, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
rng_one: 1, 
rng_times: *, 
rng_minus: -r, 
rng_zero: 0, 
rng_plus: +r, 
rng_eq: =b, 
rng_car: |r|, 
eqfun_p: IsEqFun(T;eq), 
uall: ∀[x:A]. B[x], 
and: P ∧ Q
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
and: P ∧ Q, 
cand: A c∧ B, 
drng: DRng, 
ring_p: IsRing(T;plus;zero;neg;times;one), 
prop: ℙ, 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
monoid_p: IsMonoid(T;op;id), 
assoc: Assoc(T;op), 
ident: Ident(T;op;id), 
bilinear: BiLinear(T;pl;tm), 
squash: ↓T, 
group_p: IsGroup(T;op;id;inv), 
inverse: Inverse(T;op;id;inv), 
eqfun_p: IsEqFun(T;eq), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
infix_ap: x f y
Lemmas referenced : 
drng_wf, 
equal_wf, 
assert_witness, 
assert_wf, 
rng_eq_wf, 
sq_stable__eqfun_p, 
squash_wf, 
sq_stable__bilinear, 
sq_stable__monoid_p, 
sq_stable__group_p, 
bilinear_wf, 
rng_one_wf, 
rng_times_wf, 
monoid_p_wf, 
and_wf, 
rng_minus_wf, 
rng_zero_wf, 
rng_plus_wf, 
rng_car_wf, 
group_p_wf, 
sq_stable__and
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
isect_memberEquality, 
independent_functionElimination, 
lambdaFormation, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
independent_pairFormation, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:DRng].  (IsRing(|r|;+r;0;-r;*;1)  \mwedge{}  IsEqFun(|r|;=\msubb{}))
Date html generated:
2016_05_15-PM-00_20_33
Last ObjectModification:
2016_01_15-AM-08_51_43
Theory : rings_1
Home
Index