Nuprl Lemma : imonomial-cons-ringeq

r:CRng. ∀v:ℤ List. ∀u,a:ℤ. ∀f:ℤ ⟶ |r|.  (ring_term_value(f;imonomial-term(<a, [u v]>)) ((f u) ring_term_value(f;\000Cimonomial-term(<a, v>))) ∈ |r|)


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) crng: CRng rng_times: * rng_car: |r| imonomial-term: imonomial-term(m) cons: [a b] list: List infix_ap: y all: x:A. B[x] apply: a function: x:A ⟶ B[x] pair: <a, b> int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] crng: CRng rng: Rng true: True squash: T infix_ap: y subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q prop: imonomial-term: imonomial-term(m) top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  rng_car_wf list_wf crng_wf cons_wf rng_times_wf equal_wf int-to-ring_wf ring_term_value_wf imonomial-term_wf iff_weakening_equal crng_times_ac_1 squash_wf true_wf imonomial-term-linear-ringeq subtype_rel_self list_accum_cons_lemma imonomial-ringeq-lemma itermMultiply_wf itermConstant_wf itermVar_wf list_accum_wf int_term_wf ring_term_value_mul_lemma ring_term_value_const_lemma ring_term_value_var_lemma rng_one_wf int-to-ring-one rng_times_assoc rng_times_one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis functionEquality intEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality because_Cache applyEquality natural_numberEquality lambdaEquality imageElimination independent_pairEquality sqequalRule imageMemberEquality baseClosed equalityTransitivity equalitySymmetry independent_isectElimination productElimination independent_functionElimination universeEquality dependent_functionElimination instantiate isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}r:CRng.  \mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.
    (ring\_term\_value(f;imonomial-term(<a,  [u  /  v]>))  =  ((f  u)  *  ring\_term\_value(f;imonomial-term(<a,  v\000C>))))



Date html generated: 2018_05_21-PM-03_16_56
Last ObjectModification: 2018_05_19-AM-08_08_04

Theory : rings_1


Home Index