Nuprl Lemma : imonomial-cons-ringeq
∀r:CRng. ∀v:ℤ List. ∀u,a:ℤ. ∀f:ℤ ⟶ |r|.  (ring_term_value(f;imonomial-term(<a, [u / v]>)) = ((f u) * ring_term_value(f;\000Cimonomial-term(<a, v>))) ∈ |r|)
Proof
Definitions occuring in Statement : 
ring_term_value: ring_term_value(f;t)
, 
crng: CRng
, 
rng_times: *
, 
rng_car: |r|
, 
imonomial-term: imonomial-term(m)
, 
cons: [a / b]
, 
list: T List
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
pair: <a, b>
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
squash: ↓T
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
imonomial-term: imonomial-term(m)
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
Lemmas referenced : 
rng_car_wf, 
list_wf, 
crng_wf, 
cons_wf, 
rng_times_wf, 
equal_wf, 
int-to-ring_wf, 
ring_term_value_wf, 
imonomial-term_wf, 
iff_weakening_equal, 
crng_times_ac_1, 
squash_wf, 
true_wf, 
imonomial-term-linear-ringeq, 
subtype_rel_self, 
list_accum_cons_lemma, 
imonomial-ringeq-lemma, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
list_accum_wf, 
int_term_wf, 
ring_term_value_mul_lemma, 
ring_term_value_const_lemma, 
ring_term_value_var_lemma, 
rng_one_wf, 
int-to-ring-one, 
rng_times_assoc, 
rng_times_one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
functionEquality, 
intEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
because_Cache, 
applyEquality, 
natural_numberEquality, 
lambdaEquality, 
imageElimination, 
independent_pairEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
universeEquality, 
dependent_functionElimination, 
instantiate, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}r:CRng.  \mforall{}v:\mBbbZ{}  List.  \mforall{}u,a:\mBbbZ{}.  \mforall{}f:\mBbbZ{}  {}\mrightarrow{}  |r|.
    (ring\_term\_value(f;imonomial-term(<a,  [u  /  v]>))  =  ((f  u)  *  ring\_term\_value(f;imonomial-term(<a,  v\000C>))))
Date html generated:
2018_05_21-PM-03_16_56
Last ObjectModification:
2018_05_19-AM-08_08_04
Theory : rings_1
Home
Index