Nuprl Lemma : p-shift-0

p,n:ℕ+.  (p-shift(p;0(p);n) 0(p) ∈ p-adics(p))


Proof




Definitions occuring in Statement :  p-shift: p-shift(p;a;k) p-int: k(p) p-adics: p-adics(p) nat_plus: + all: x:A. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q) p-int: k(p) p-reduce: mod(p^n) nat: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) p-shift: p-shift(p;a;k) subtype_rel: A ⊆B
Lemmas referenced :  equal-p-adics p-shift_wf p-int_wf nat_plus_wf modulus_base exp_wf_nat_plus nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf istype-le istype-false exp-positive istype-less_than exp_wf2 itermAdd_wf int_term_value_add_lemma decidable__lt zero-div-rem exp_wf3 nat_plus_inc_int_nzero
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache closedConclusion natural_numberEquality hypothesis independent_isectElimination productElimination inhabitedIsType universeIsType sqequalRule dependent_set_memberEquality_alt setElimination rename dependent_functionElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination productIsType functionExtensionality addEquality applyEquality

Latex:
\mforall{}p,n:\mBbbN{}\msupplus{}.    (p-shift(p;0(p);n)  =  0(p))



Date html generated: 2020_05_19-PM-10_08_23
Last ObjectModification: 2020_01_08-PM-06_08_20

Theory : rings_1


Home Index