Nuprl Lemma : p-shift-0
∀p,n:ℕ+.  (p-shift(p;0(p);n) = 0(p) ∈ p-adics(p))
Proof
Definitions occuring in Statement : 
p-shift: p-shift(p;a;k), 
p-int: k(p), 
p-adics: p-adics(p), 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
rev_uimplies: rev_uimplies(P;Q), 
p-int: k(p), 
p-reduce: i mod(p^n), 
nat: ℕ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
prop: ℙ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
p-shift: p-shift(p;a;k), 
subtype_rel: A ⊆r B
Lemmas referenced : 
equal-p-adics, 
p-shift_wf, 
p-int_wf, 
nat_plus_wf, 
modulus_base, 
exp_wf_nat_plus, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-false, 
exp-positive, 
istype-less_than, 
exp_wf2, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
zero-div-rem, 
exp_wf3, 
nat_plus_inc_int_nzero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
closedConclusion, 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
productElimination, 
inhabitedIsType, 
universeIsType, 
sqequalRule, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
productIsType, 
functionExtensionality, 
addEquality, 
applyEquality
Latex:
\mforall{}p,n:\mBbbN{}\msupplus{}.    (p-shift(p;0(p);n)  =  0(p))
Date html generated:
2020_05_19-PM-10_08_23
Last ObjectModification:
2020_01_08-PM-06_08_20
Theory : rings_1
Home
Index