Nuprl Lemma : face-compatible-image
∀X:CubicalSet. ∀I,K:Cname List. ∀f:name-morph(I;K). ∀fc1,fc2:I-face(X;I).
  ((↑isname(f (fst(fc1))))
  ⇒ (↑isname(f (fst(fc2))))
  ⇒ face-compatible(X;I;fc1;fc2)
  ⇒ face-compatible(X;K;face-image(X;I;K;f;fc1);face-image(X;I;K;f;fc2)))
Proof
Definitions occuring in Statement : 
face-image: face-image(X;I;K;f;face), 
face-compatible: face-compatible(X;I;f1;f2), 
I-face: I-face(X;I), 
cubical-set: CubicalSet, 
name-morph: name-morph(I;J), 
isname: isname(z), 
coordinate_name: Cname, 
list: T List, 
assert: ↑b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
I-face: I-face(X;I), 
face-compatible: face-compatible(X;I;f1;f2), 
spreadn: spread3, 
face-image: face-image(X;I;K;f;face), 
pi1: fst(t), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
name-morph: name-morph(I;J), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
nameset: nameset(L), 
decidable: Dec(P), 
or: P ∨ Q, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
guard: {T}, 
top: Top, 
false: False, 
sq_type: SQType(T), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
int_upper: {i...}, 
coordinate_name: Cname, 
not: ¬A, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
squash: ↓T, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
true: True, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs
Lemmas referenced : 
assert-isname, 
decidable__equal-coordinate_name, 
not_wf, 
equal_wf, 
coordinate_name_wf, 
nameset_wf, 
face-compatible_wf, 
assert_wf, 
isname_wf, 
pi1_wf_top, 
I-face_wf, 
name-morph_wf, 
list_wf, 
cubical-set_wf, 
int_subtype_base, 
le_wf, 
set_subtype_base, 
subtype_base_sq, 
member-list-diff, 
cname_deq_wf, 
cons_wf, 
nil_wf, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
intformnot_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
equal-wf-base-T, 
member_singleton, 
l_member_wf, 
list-diff_wf, 
name-morph_subtype_remove1, 
squash_wf, 
true_wf, 
cube-set-restriction-comp, 
subtype_rel_self, 
iff_weakening_equal, 
I-cube_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
face-map_wf2, 
subtype_rel_wf, 
list-diff-diff, 
list-diff2, 
list-diff2-sym, 
list_subtype_base, 
name-comp_wf, 
cube-set-restriction_wf, 
face-map-comp
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
setElimination, 
hypothesis, 
independent_isectElimination, 
because_Cache, 
dependent_functionElimination, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaEquality, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
intEquality, 
cumulativity, 
instantiate, 
independent_functionElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
hyp_replacement, 
addLevel, 
impliesFunctionality, 
productEquality, 
universeEquality
Latex:
\mforall{}X:CubicalSet.  \mforall{}I,K:Cname  List.  \mforall{}f:name-morph(I;K).  \mforall{}fc1,fc2:I-face(X;I).
    ((\muparrow{}isname(f  (fst(fc1))))
    {}\mRightarrow{}  (\muparrow{}isname(f  (fst(fc2))))
    {}\mRightarrow{}  face-compatible(X;I;fc1;fc2)
    {}\mRightarrow{}  face-compatible(X;K;face-image(X;I;K;f;fc1);face-image(X;I;K;f;fc2)))
Date html generated:
2018_05_23-PM-06_32_29
Last ObjectModification:
2018_05_16-PM-03_01_57
Theory : cubical!sets
Home
Index