Nuprl Lemma : face-map-property

[L:Cname List]
  ∀x:Cname. ∀p:ℕ2. ∀y:nameset([x L]).
    (((↑isname((x:=p) y))  ((¬(y x ∈ Cname)) ∧ (((x:=p) y) y ∈ nameset(L))))
    ∧ ((¬↑isname((x:=p) y))  ((y x ∈ Cname) ∧ (((x:=p) y) p ∈ ℕ2))))


Proof




Definitions occuring in Statement :  face-map: (x:=i) isname: isname(z) nameset: nameset(L) coordinate_name: Cname cons: [a b] list: List int_seg: {i..j-} assert: b uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] face-map: (x:=i) member: t ∈ T nameset: nameset(L) coordinate_name: Cname int_upper: {i...} uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} prop: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q assert: b cand: c∧ B false: False int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q isname: isname(z) le_int: i ≤j lt_int: i <j bnot: ¬bb le: A ≤ B less_than': less_than'(a;b) lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top squash: T true: True
Lemmas referenced :  nameset_wf cons_wf coordinate_name_wf int_seg_wf list_wf eq_int_wf bool_wf equal-wf-T-base assert_wf equal_wf subtype_base_sq int_subtype_base bnot_wf not_wf uiff_transitivity eqtt_to_assert assert_of_eq_int iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot bool_subtype_base false_wf decidable__equal_int int_seg_properties bfalse_wf int_seg_subtype int_seg_cases satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf isname-name intformeq_wf intformnot_wf int_formula_prop_eq_lemma int_formula_prop_not_lemma true_wf l_member_wf cons_member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality natural_numberEquality setElimination rename equalityTransitivity equalitySymmetry baseClosed because_Cache intEquality instantiate cumulativity independent_isectElimination dependent_functionElimination independent_functionElimination unionElimination equalityElimination productElimination independent_pairFormation impliesFunctionality voidElimination independent_pairEquality axiomEquality hypothesis_subsumption addEquality dependent_pairFormation lambdaEquality int_eqEquality isect_memberEquality voidEquality computeAll applyLambdaEquality imageMemberEquality imageElimination dependent_set_memberEquality

Latex:
\mforall{}[L:Cname  List]
    \mforall{}x:Cname.  \mforall{}p:\mBbbN{}2.  \mforall{}y:nameset([x  /  L]).
        (((\muparrow{}isname((x:=p)  y))  {}\mRightarrow{}  ((\mneg{}(y  =  x))  \mwedge{}  (((x:=p)  y)  =  y)))
        \mwedge{}  ((\mneg{}\muparrow{}isname((x:=p)  y))  {}\mRightarrow{}  ((y  =  x)  \mwedge{}  (((x:=p)  y)  =  p))))



Date html generated: 2017_10_05-AM-10_06_30
Last ObjectModification: 2017_07_28-AM-11_16_22

Theory : cubical!sets


Home Index