Nuprl Lemma : face-map-property
∀[L:Cname List]
  ∀x:Cname. ∀p:ℕ2. ∀y:nameset([x / L]).
    (((↑isname((x:=p) y)) 
⇒ ((¬(y = x ∈ Cname)) ∧ (((x:=p) y) = y ∈ nameset(L))))
    ∧ ((¬↑isname((x:=p) y)) 
⇒ ((y = x ∈ Cname) ∧ (((x:=p) y) = p ∈ ℕ2))))
Proof
Definitions occuring in Statement : 
face-map: (x:=i)
, 
isname: isname(z)
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
cons: [a / b]
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
face-map: (x:=i)
, 
member: t ∈ T
, 
nameset: nameset(L)
, 
coordinate_name: Cname
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
assert: ↑b
, 
cand: A c∧ B
, 
false: False
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
isname: isname(z)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
true: True
Lemmas referenced : 
nameset_wf, 
cons_wf, 
coordinate_name_wf, 
int_seg_wf, 
list_wf, 
eq_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
equal_wf, 
subtype_base_sq, 
int_subtype_base, 
bnot_wf, 
not_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
bool_subtype_base, 
false_wf, 
decidable__equal_int, 
int_seg_properties, 
bfalse_wf, 
int_seg_subtype, 
int_seg_cases, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
isname-name, 
intformeq_wf, 
intformnot_wf, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
true_wf, 
l_member_wf, 
cons_member
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
hypothesisEquality, 
natural_numberEquality, 
setElimination, 
rename, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
because_Cache, 
intEquality, 
instantiate, 
cumulativity, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
unionElimination, 
equalityElimination, 
productElimination, 
independent_pairFormation, 
impliesFunctionality, 
voidElimination, 
independent_pairEquality, 
axiomEquality, 
hypothesis_subsumption, 
addEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
applyLambdaEquality, 
imageMemberEquality, 
imageElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[L:Cname  List]
    \mforall{}x:Cname.  \mforall{}p:\mBbbN{}2.  \mforall{}y:nameset([x  /  L]).
        (((\muparrow{}isname((x:=p)  y))  {}\mRightarrow{}  ((\mneg{}(y  =  x))  \mwedge{}  (((x:=p)  y)  =  y)))
        \mwedge{}  ((\mneg{}\muparrow{}isname((x:=p)  y))  {}\mRightarrow{}  ((y  =  x)  \mwedge{}  (((x:=p)  y)  =  p))))
Date html generated:
2017_10_05-AM-10_06_30
Last ObjectModification:
2017_07_28-AM-11_16_22
Theory : cubical!sets
Home
Index