Nuprl Lemma : cubical-contr_wf
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[p:{Gamma ⊢ _:Contractible(A)}]. ∀[phi:{Gamma ⊢ _:𝔽}].
∀[u:{Gamma, phi ⊢ _:(A)iota}].
  (cubical-contr(Gamma; A; cA; p; phi; u) ∈ {Gamma ⊢ _:A[phi |⟶ u]})
Proof
Definitions occuring in Statement : 
cubical-contr: cubical-contr(Gamma; A; cA; p; phi; u), 
composition-op: Gamma ⊢ CompOp(A), 
contractible-type: Contractible(A), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}, 
context-subset: Gamma, phi, 
face-type: 𝔽, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical_set: CubicalSet, 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
cubical-contr: cubical-contr(Gamma; A; cA; p; phi; u), 
subtype_rel: A ⊆r B, 
contractible-type: Contractible(A), 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
cc-fst: p, 
csm-ap-type: (AF)s, 
csm-id-adjoin: [u], 
csm-comp: G o F, 
csm-ap: (s)x, 
csm-id: 1(X), 
csm-adjoin: (s;u), 
compose: f o g, 
pi1: fst(t), 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
squash: ↓T, 
true: True, 
prop: ℙ, 
subset-iota: iota, 
guard: {T}, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
istype: istype(T), 
csm-ap-term: (t)s, 
pi2: snd(t), 
sq_type: SQType(T), 
interval-type: 𝕀, 
constant-cubical-type: (X), 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
Lemmas referenced : 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity2, 
cc-fst_wf, 
path-type_wf, 
csm-ap-term_wf, 
cc-snd_wf, 
csm-adjoin_wf, 
csm-comp_wf, 
csm-id-adjoin_wf, 
cubical-fst_wf, 
cubical-pi_wf, 
csm-ap-type-iota, 
thin-context-subset, 
cubical-term-eqcd, 
subset-cubical-term, 
context-subset_wf, 
context-subset-is-subset, 
istype-cubical-term, 
subset-iota_wf2, 
face-type_wf, 
contractible-type_wf, 
composition-op_wf, 
cubical-type_wf, 
cubical_set_wf, 
cubical-snd_wf, 
csm_id_adjoin_fst_type_lemma, 
squash_wf, 
true_wf, 
cubical-app_wf, 
csm-context-subset-subtype2, 
csm-id_wf, 
csm-context-subset-subtype3, 
csm-cubical-pi, 
cubical-pi-context-subset, 
subtype_rel-equal, 
equal_wf, 
istype-universe, 
csm-ap-id-type, 
subtype_rel_self, 
iff_weakening_equal, 
csm-path-type, 
cube_set_map_wf, 
csm-ap-type-fst-adjoin, 
thin-context-subset-adjoin, 
context-subset-term-subtype, 
csm_ap_term_fst_adjoin_lemma, 
subtype_base_sq, 
base_wf, 
path-type-subset-adjoin, 
cubical-path-app_wf, 
interval-type_wf, 
cubical-term_wf, 
cubical-path-app-0, 
cubical-path-ap-id-adjoin, 
interval-0_wf, 
csm-id-adjoin_wf-interval-0, 
composition-term_wf, 
cc-fst_wf_interval, 
csm-composition_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
interval-1_wf, 
cubical-path-app-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
sqequalRule, 
because_Cache, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
lambdaEquality_alt, 
cumulativity, 
universeIsType, 
universeEquality, 
hyp_replacement, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
imageElimination, 
Error :memTop, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityElimination, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].  \mforall{}[p:\{Gamma  \mvdash{}  \_:Contractible(A)\}].
\mforall{}[phi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[u:\{Gamma,  phi  \mvdash{}  \_:(A)iota\}].
    (cubical-contr(Gamma;  A;  cA;  p;  phi;  u)  \mmember{}  \{Gamma  \mvdash{}  \_:A[phi  |{}\mrightarrow{}  u]\})
Date html generated:
2020_05_20-PM-04_19_53
Last ObjectModification:
2020_04_19-PM-07_31_27
Theory : cubical!type!theory
Home
Index