Nuprl Lemma : dM-lift-nc-1
∀J:fset(ℕ). ∀j:{i:ℕ| ¬i ∈ J} . ∀v:Point(dM(J)).  ((dM-lift(J;J+j;(j1)) v) = v ∈ Point(dM(J)))
Proof
Definitions occuring in Statement : 
nc-1: (i1), 
add-name: I+i, 
dM-lift: dM-lift(I;J;f), 
dM: dM(I), 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
all: ∀x:A. B[x], 
not: ¬A, 
set: {x:A| B[x]} , 
apply: f a, 
equal: s = t ∈ T, 
lattice-point: Point(l)
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
subtype_rel: A ⊆r B, 
DeMorgan-algebra: DeMorganAlgebra, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
and: P ∧ Q, 
guard: {T}, 
uimplies: b supposing a, 
so_apply: x[s], 
not: ¬A, 
implies: P ⇒ Q, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
nc-1: (i1), 
names: names(I), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
true: True, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
lattice-point_wf, 
dM_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
bounded-lattice-structure_wf, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
istype-void, 
fset_wf, 
f-subset-add-name, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
f-subset_wf, 
nc-1_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
dM_inc_wf, 
names_wf, 
squash_wf, 
true_wf, 
istype-universe, 
dM-lift-is-id, 
subtype_rel_self, 
iff_weakening_equal, 
int_subtype_base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality_alt, 
productEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
isectEquality, 
setIsType, 
functionIsType, 
intEquality, 
natural_numberEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
equalityIstype, 
promote_hyp, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}J:fset(\mBbbN{}).  \mforall{}j:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  J\}  .  \mforall{}v:Point(dM(J)).    ((dM-lift(J;J+j;(j1))  v)  =  v)
Date html generated:
2020_05_20-PM-01_36_27
Last ObjectModification:
2020_01_06-PM-00_02_35
Theory : cubical!type!theory
Home
Index