Nuprl Lemma : nc-e-comp

I:fset(ℕ). ∀i,j,k:ℕ.  ((¬j ∈ I)  (e(k;j) ⋅ e(j;i) e(k;i) ∈ I+i ⟶ I+k))


Proof




Definitions occuring in Statement :  nc-e: e(i;j) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) nat-deq: NatDeq nat: all: x:A. B[x] not: ¬A implies:  Q equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q names-hom: I ⟶ J nc-e: e(i;j) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) member: t ∈ T uall: [x:A]. B[x] names: names(I) nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] prop: true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top sq_stable: SqStable(P) nat-deq: NatDeq int-deq: IntDeq
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf lattice-point_wf dM_wf add-name_wf dM-lift-inc nc-e_wf trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self dM_inc_wf iff_weakening_equal eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf not-added-name names-subtype f-subset-add-name names_wf not_wf nat-deq_wf fset_wf int_subtype_base sq_stable__fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionExtensionality sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination applyEquality lambdaEquality imageElimination because_Cache dependent_functionElimination dependent_set_memberEquality intEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation promote_hyp instantiate cumulativity voidElimination int_eqEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}i,j,k:\mBbbN{}.    ((\mneg{}j  \mmember{}  I)  {}\mRightarrow{}  (e(k;j)  \mcdot{}  e(j;i)  =  e(k;i)))



Date html generated: 2017_10_05-AM-01_03_50
Last ObjectModification: 2017_07_28-AM-09_26_50

Theory : cubical!type!theory


Home Index