Nuprl Lemma : nc-e-same

I:fset(ℕ). ∀z:ℕ.  (e(z;z) 1 ∈ I+z ⟶ I+z)


Proof




Definitions occuring in Statement :  nc-e: e(i;j) add-name: I+i nh-id: 1 names-hom: I ⟶ J fset: fset(T) nat: all: x:A. B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] names-hom: I ⟶ J nh-id: 1 nc-e: e(i;j) member: t ∈ T uall: [x:A]. B[x] names: names(I) nat: implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  squash: T subtype_rel: A ⊆B sq_stable: SqStable(P) ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: label: ...$L... t true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int dM_inc_wf add-name_wf sq_stable__fset-member nat_wf int-deq_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le fset-member_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma iff_weakening_equal trivial-member-add-name1 eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int names_wf istype-nat fset_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut functionExtensionality sqequalRule introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination applyEquality lambdaEquality_alt imageElimination because_Cache dependent_set_memberEquality_alt independent_functionElimination imageMemberEquality baseClosed dependent_functionElimination natural_numberEquality approximateComputation dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination equalityIstype promote_hyp instantiate cumulativity

Latex:
\mforall{}I:fset(\mBbbN{}).  \mforall{}z:\mBbbN{}.    (e(z;z)  =  1)



Date html generated: 2020_05_20-PM-01_37_04
Last ObjectModification: 2019_12_08-PM-07_04_49

Theory : cubical!type!theory


Home Index