Nuprl Lemma : nh-comp-nc-m-s

[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[j:ℕ].  (s ⋅ m(i;j) s ⋅ s ∈ I+i+j ⟶ I)


Proof




Definitions occuring in Statement :  nc-m: m(i;j) nc-s: s add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T names-hom: I ⟶ J nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-s: s prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B uimplies: supposing a nat: so_apply: x[s] DeMorgan-algebra: DeMorganAlgebra and: P ∧ Q guard: {T} all: x:A. B[x] true: True nc-m: m(i;j) squash: T iff: ⇐⇒ Q rev_implies:  Q implies:  Q names: names(I) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  names_wf nat_wf set_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self lattice-point_wf dM_wf add-name_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf equal_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nc-m_wf trivial-member-add-name1 names-subtype f-subset-add-name dM_inc_wf squash_wf true_wf dM-lift-inc iff_weakening_equal eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int fset_wf deq_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf dM-point-subtype f-subset-add-name1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis isect_memberEquality axiomEquality because_Cache lambdaEquality applyEquality intEquality independent_isectElimination natural_numberEquality setElimination rename instantiate productEquality cumulativity universeEquality dependent_functionElimination imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination independent_functionElimination lambdaFormation unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination hyp_replacement dependent_set_memberEquality int_eqEquality voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].  \mforall{}[j:\mBbbN{}].    (s  \mcdot{}  m(i;j)  =  s  \mcdot{}  s)



Date html generated: 2017_10_05-AM-01_04_50
Last ObjectModification: 2017_07_28-AM-09_27_11

Theory : cubical!type!theory


Home Index