Nuprl Lemma : sigmacomp_wf1
∀[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[B:{Gamma.A ⊢ _}]. ∀[cA:Gamma ⊢ CompOp(A)]. ∀[cB:Gamma.A ⊢ CompOp(B)].
  (sigmacomp(Gamma;A;B;cA;cB) ∈ I:fset(ℕ)
   ⟶ i:{i:ℕ| ¬i ∈ I} 
   ⟶ rho:Gamma(I+i)
   ⟶ phi:𝔽(I)
   ⟶ mu:{I+i,s(phi) ⊢ _:(Σ A B)<rho> o iota}
   ⟶ lambda:cubical-path-0(Gamma;Σ A B;I;i;rho;phi;mu)
   ⟶ cubical-path-1(Gamma;Σ A B;I;i;rho;phi;mu))
Proof
Definitions occuring in Statement : 
sigmacomp: sigmacomp(Gamma;A;B;cA;cB), 
composition-op: Gamma ⊢ CompOp(A), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-sigma: Σ A B, 
cube-context-adjoin: X.A, 
cubical-term: {X ⊢ _:A}, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
subset-iota: iota, 
cubical-subset: I,psi, 
face-presheaf: 𝔽, 
csm-comp: G o F, 
context-map: <rho>, 
formal-cube: formal-cube(I), 
cube-set-restriction: f(s), 
I_cube: A(I), 
cubical_set: CubicalSet, 
nc-s: s, 
add-name: I+i, 
fset-member: a ∈ s, 
fset: fset(T), 
int-deq: IntDeq, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
not: ¬A, 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
sigmacomp: sigmacomp(Gamma;A;B;cA;cB), 
member: t ∈ T, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
composition-op: Gamma ⊢ CompOp(A), 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
and: P ∧ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
cubical-type: {X ⊢ _}, 
cc-snd: q, 
subset-iota: iota, 
csm-comp: G o F, 
csm-ap-type: (AF)s, 
cc-fst: p, 
csm-ap: (s)x, 
compose: f o g, 
squash: ↓T, 
guard: {T}, 
true: True, 
cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u), 
cubical-sigma: Σ A B, 
pi1: fst(t), 
cubical-path-condition: cubical-path-condition(Gamma;A;I;i;rho;phi;u;a0), 
pi2: snd(t), 
cubical-type-ap-morph: (u a f), 
iff: P ⇐⇒ Q, 
filling-op: filling-op(Gamma;A), 
let: let, 
rev_implies: P ⇐ Q, 
cube-context-adjoin: X.A, 
context-map: <rho>, 
csm-adjoin: (s;u), 
functor-arrow: arrow(F), 
cc-adjoin-cube: (v;u), 
section-iota: section-iota(Gamma;A;I;rho;a), 
canonical-section: canonical-section(Gamma;A;I;rho;a), 
csm-ap-term: (t)s, 
cube-set-restriction: f(s), 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u), 
cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1), 
I_cube: A(I), 
functor-ob: ob(F), 
face-presheaf: 𝔽, 
lattice-point: Point(l), 
record-select: r.x, 
face_lattice: face_lattice(I), 
face-lattice: face-lattice(T;eq), 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]), 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P), 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o), 
record-update: r[x := v], 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
bfalse: ff, 
btrue: tt, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
cubical-term-at: u(a)
Lemmas referenced : 
fill_from_comp_wf, 
cubical-path-0_wf, 
cubical-sigma_wf, 
cubical-type-cumulativity2, 
cubical-term_wf, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
cubical_set_cumulativity-i-j, 
cubical-type-cumulativity, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nat_wf, 
not_wf, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
fset_wf, 
composition-op_wf, 
cube-context-adjoin_wf, 
cubical-type_wf, 
cubical_set_wf, 
csm-cubical-sigma, 
cubical-fst_wf, 
csm-adjoin_wf, 
cc-fst_wf, 
cc-snd_wf, 
squash_wf, 
true_wf, 
equal_functionality_wrt_subtype_rel2, 
cubical_type_at_pair_lemma, 
cubical_type_ap_morph_pair_lemma, 
cubical-path-condition_wf, 
pi1_wf_top, 
cubical-type-at_wf, 
cubical-subset-I_cube-member, 
nc-0_wf, 
cubical-subset-I_cube, 
equal_wf, 
istype-universe, 
cubical-fst-at, 
subtype_rel_self, 
iff_weakening_equal, 
cubical-snd_wf, 
csm-id-adjoin-ap-type, 
cc-adjoin-cube_wf, 
cube_set_map_wf, 
csm-equal2, 
istype-cubical-term, 
I_cube_pair_redex_lemma, 
arrow_pair_lemma, 
cubical-type-ap-morph_wf, 
istype-cubical-type-at, 
cc-adjoin-cube-restriction, 
cubical-snd-at, 
subtype_rel-equal, 
nc-1_wf, 
nh-comp_wf, 
name-morph-satisfies_wf, 
lattice-point_wf, 
face_lattice_wf, 
nh-id_wf, 
nh-id-right, 
uiff_transitivity2, 
name-morph-satisfies-comp, 
names-hom_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
nh-comp-assoc, 
s-comp-nc-1, 
csm-ap-type-at, 
cube-set-restriction-comp, 
cubical-term-at_wf, 
cubical-type-ap-morph-comp-general, 
pair-eta, 
cubical-path-condition'_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
functionExtensionality, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
rename, 
setElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
universeIsType, 
voidElimination, 
setEquality, 
intEquality, 
productElimination, 
imageElimination, 
cumulativity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
independent_pairEquality, 
dependent_pairEquality_alt, 
productIsType, 
productEquality, 
isectEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma.A  \mvdash{}  \_\}].  \mforall{}[cA:Gamma  \mvdash{}  CompOp(A)].
\mforall{}[cB:Gamma.A  \mvdash{}  CompOp(B)].
    (sigmacomp(Gamma;A;B;cA;cB)  \mmember{}  I:fset(\mBbbN{})
      {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
      {}\mrightarrow{}  rho:Gamma(I+i)
      {}\mrightarrow{}  phi:\mBbbF{}(I)
      {}\mrightarrow{}  mu:\{I+i,s(phi)  \mvdash{}  \_:(\mSigma{}  A  B)<rho>  o  iota\}
      {}\mrightarrow{}  lambda:cubical-path-0(Gamma;\mSigma{}  A  B;I;i;rho;phi;mu)
      {}\mrightarrow{}  cubical-path-1(Gamma;\mSigma{}  A  B;I;i;rho;phi;mu))
Date html generated:
2020_05_20-PM-04_05_10
Last ObjectModification:
2020_04_17-AM-08_49_46
Theory : cubical!type!theory
Home
Index