Nuprl Lemma : rng-pps_wf
∀r:IntegDom{i}. ∀[eq:EqDecider(|r|)]. (rng-pps(r;eq) ∈ ProjectivePlane)
Proof
Definitions occuring in Statement : 
rng-pps: rng-pps(r;eq), 
projective-plane: ProjectivePlane, 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
integ_dom: IntegDom{i}, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
projective-plane: ProjectivePlane, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
basic-projective-plane: BasicProjectivePlane, 
integ_dom: IntegDom{i}, 
crng: CRng, 
rng: Rng, 
zero-vector: 0, 
true: True, 
squash: ↓T, 
less_than: a < b, 
less_than': less_than'(a;b), 
le: A ≤ B, 
lelt: i ≤ j < k, 
int_seg: {i..j-}, 
false: False, 
exists: ∃x:A. B[x], 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
or: P ∨ Q, 
decidable: Dec(P), 
implies: P ⇒ Q, 
not: ¬A, 
btrue: tt, 
mk-pgeo-prim: mk-pgeo-prim, 
bfalse: ff, 
ifthenelse: if b then t else f fi , 
eq_atom: x =a y, 
top: Top, 
pgeo-point: Point, 
mk-pgeo: mk-pgeo(p; ss; por; lor; j; m; p3; l3), 
rng-pp-primitives: rng-pp-primitives(r), 
rng-pps: rng-pps(r;eq), 
integ_dom_p: IsIntegDom(r), 
nequal: a ≠ b ∈ T , 
nat: ℕ, 
sq_stable: SqStable(P), 
pgeo-line: Line, 
pgeo-plsep: pgeo-plsep(p; a; b), 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
assert: ↑b, 
bnot: ¬bb, 
sq_type: SQType(T), 
eqof: eqof(d), 
uiff: uiff(P;Q), 
it: ⋅, 
unit: Unit, 
bool: 𝔹, 
exposed-it: exposed-it, 
deq: EqDecider(T), 
pgeo-incident: a I b, 
pgeo-lsep: l ≠ m, 
pgeo-lpsep: a ≠ b, 
pgeo-psep: a ≠ b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
infix_ap: x f y, 
scalar-triple-product: |a,b,c|, 
cand: A c∧ B, 
basic-pgeo-axioms: BasicProjectiveGeometryAxioms(g), 
pgeo-leq: a ≡ b, 
pgeo-peq: a ≡ b, 
mk-complete-pgeo: mk-complete-pgeo(pg;p), 
pi1: fst(t), 
pgeo-join: p ∨ q, 
triangle-axiom1: triangle-axiom1(g), 
pgeo-meet: l ∧ m, 
triangle-axiom2: triangle-axiom2(g)
Lemmas referenced : 
basic-pgeo-axioms_wf, 
projective-plane-structure_subtype, 
projective-plane-structure-complete_subtype, 
subtype_rel_transitivity, 
projective-plane-structure-complete_wf, 
projective-plane-structure_wf, 
pgeo-primitives_wf, 
triangle-axiom1_wf, 
triangle-axiom2_wf, 
deq_wf, 
rng_car_wf, 
integ_dom_wf, 
not_wf, 
zero-vector_wf, 
equal_wf, 
lelt_wf, 
false_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
int_seg_wf, 
rng_one_wf, 
rec_select_update_lemma, 
mk-complete-pgeo_wf, 
mk-pgeo_wf, 
rng-pp-primitives_wf, 
squash_wf, 
rng_zero_wf, 
le_wf, 
scalar-product_wf, 
exists_wf, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
eqff_to_assert, 
safe-assert-deq, 
eqtt_to_assert, 
bool_wf, 
cross-product_wf, 
decidable__assert, 
assert_wf, 
cross-product-equal-0, 
deq_property, 
decidable_functionality, 
iff_weakening_uiff, 
iff_weakening_equal, 
rng_times_zero, 
rng_times_wf, 
true_wf, 
scalar-product-mul, 
subtype_rel_self, 
crng_times_comm, 
scalar-product-0, 
scalar-product-comm, 
scalar-triple-product-symmetry, 
nat_wf, 
rng_wf, 
cross-product-same, 
rng-pp-nontriv1_wf, 
rng-pp-nontriv2_wf, 
deq-implies, 
cross-product-equal-0-iff, 
iff_wf, 
triple-cross-product-zero, 
vector-mul_wf, 
vector-mul-mul, 
rng_sig_wf, 
set_wf, 
scalar-triple-product_wf, 
rng_minus_wf, 
infix_ap_wf, 
rng_plus_wf, 
Binet-Cauchy-identity, 
rng_minus_zero, 
rng_plus_zero
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
dependent_functionElimination, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
functionEquality, 
equalityElimination, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
intEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
unionElimination, 
functionExtensionality, 
applyLambdaEquality, 
natural_numberEquality, 
lambdaEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
productElimination, 
setEquality, 
imageElimination, 
inlEquality, 
cumulativity, 
promote_hyp, 
independent_pairEquality, 
dependent_pairEquality, 
inrEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
hyp_replacement, 
inrFormation
Latex:
\mforall{}r:IntegDom\{i\}.  \mforall{}[eq:EqDecider(|r|)].  (rng-pps(r;eq)  \mmember{}  ProjectivePlane)
Date html generated:
2019_10_16-PM-02_14_01
Last ObjectModification:
2018_08_23-PM-02_17_59
Theory : euclidean!plane!geometry
Home
Index