Nuprl Lemma : proj-sep_symmetry
∀n:ℕ. ∀a,b:ℙ^n.  (a ≠ b ⇒ b ≠ a)
Proof
Definitions occuring in Statement : 
proj-sep: a ≠ b, 
real-proj: ℙ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
proj-sep: a ≠ b, 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
real-vec-sep: a ≠ b, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
subtype_rel: A ⊆r B, 
real: ℝ, 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
sq_stable: SqStable(P), 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
real-vec-mul: a*X, 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
rev_implies: P ⇐ Q, 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
le: A ≤ B, 
less_than': less_than'(a;b), 
absval: |i|, 
sq_type: SQType(T)
Lemmas referenced : 
proj-sep_wf, 
real-proj_wf, 
nat_wf, 
real-vec-sep-symmetry, 
sq_stable__less_than, 
int-to-real_wf, 
real_wf, 
real-vec-dist_wf, 
nat_plus_properties, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
punit_wf, 
real-vec_wf, 
req_wf, 
real-vec-norm_wf, 
real-vec-mul_wf, 
real-vec-dist-dilation, 
int_seg_wf, 
rmul_wf, 
int_seg_properties, 
intformless_wf, 
int_formula_prop_less_lemma, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
rabs_wf, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
req_functionality, 
real-vec-dist_functionality, 
req-vec_weakening, 
req_weakening, 
rless_functionality, 
rleq_wf, 
rless_wf, 
squash_wf, 
true_wf, 
rabs-int, 
iff_weakening_equal, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
false_wf, 
absval_wf, 
rless-implies-rless, 
rsub_wf, 
rmul_functionality, 
real-vec-dist-symmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
independent_pairFormation, 
productElimination, 
thin, 
promote_hyp, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
rename, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
sqequalRule, 
because_Cache, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setEquality, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
instantiate, 
cumulativity
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbP{}\^{}n.    (a  \mneq{}  b  {}\mRightarrow{}  b  \mneq{}  a)
Date html generated:
2017_10_05-AM-00_17_31
Last ObjectModification:
2017_06_18-PM-02_03_55
Theory : inner!product!spaces
Home
Index