Nuprl Lemma : rv-norm0
∀[rv:InnerProductSpace]. (||0|| = r0)
Proof
Definitions occuring in Statement : 
rv-norm: ||x||, 
inner-product-space: InnerProductSpace, 
rv-0: 0, 
req: x = y, 
int-to-real: r(n), 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
sq_stable: SqStable(P), 
squash: ↓T, 
and: P ∧ Q, 
uimplies: b supposing a, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
false: False, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q), 
prop: ℙ, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
true: True, 
guard: {T}
Lemmas referenced : 
rv-norm_wf, 
rv-0_wf, 
req_witness, 
inner-product-space_subtype, 
int-to-real_wf, 
inner-product-space_wf, 
sq_stable__req, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
square-req-iff, 
rleq_weakening_equal, 
req_functionality, 
rnexp_wf, 
istype-void, 
istype-le, 
exp_wf2, 
req_weakening, 
rnexp-int, 
squash_wf, 
true_wf, 
real_wf, 
istype-int, 
exp-zero, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
subtype_rel_self, 
iff_weakening_equal, 
rnexp2, 
iff_weakening_uiff, 
rv-ip0
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
hypothesis, 
sqequalRule, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
lambdaEquality_alt, 
setElimination, 
rename, 
natural_numberEquality, 
universeIsType, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_isectElimination, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
voidElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
Error :memTop, 
instantiate, 
universeEquality, 
promote_hyp
Latex:
\mforall{}[rv:InnerProductSpace].  (||0||  =  r0)
Date html generated:
2020_05_20-PM-01_11_26
Last ObjectModification:
2019_12_09-PM-11_48_31
Theory : inner!product!spaces
Home
Index