Nuprl Lemma : face-lattice-basis
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(face-lattice(T;eq))].
  (x = \/(λs./\(λu.{{u}}"(s))"(x)) ∈ Point(face-lattice(T;eq)))
Proof
Definitions occuring in Statement : 
face-lattice: face-lattice(T;eq), 
lattice-fset-join: \/(s), 
lattice-fset-meet: /\(s), 
lattice-point: Point(l), 
fset-image: f"(s), 
deq-fset: deq-fset(eq), 
fset-singleton: {x}, 
union-deq: union-deq(A;B;a;b), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
lambda: λx.A[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
face-lattice: face-lattice(T;eq), 
prop: ℙ, 
squash: ↓T, 
top: Top, 
implies: P ⇒ Q, 
and: P ∧ Q, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x), 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
true: True, 
bdd-distributive-lattice: BoundedDistributiveLattice, 
face-lattice0: (x=0), 
face-lattice1: (x=1), 
not: ¬A, 
face-lattice-constraints: face-lattice-constraints(x), 
fset-singleton: {x}, 
fset-filter: {x ∈ s | P[x]}, 
fset-null: fset-null(s), 
isl: isl(x), 
f-subset: xs ⊆ ys, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
free-dlwc-basis, 
union-deq_wf, 
face-lattice-constraints_wf, 
equal_wf, 
squash_wf, 
true_wf, 
fl-point-sq, 
lattice-fset-join_wf, 
face-lattice_wf, 
bdd-distributive-lattice-subtype-bdd-lattice, 
fset-image_wf, 
fset_wf, 
set_wf, 
assert_wf, 
fset-antichain_wf, 
fset-all_wf, 
fset-contains-none_wf, 
deq-fset_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set2, 
lattice-fset-meet_wf, 
fset-null_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
all_wf, 
iff_wf, 
fset-singleton_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
decidable__equal_set, 
decidable__equal_fset, 
decidable__equal_union, 
decidable-equal-deq, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-meet_wf, 
lattice-join_wf, 
deq_wf, 
face-lattice0_wf, 
face-lattice1_wf, 
filter_cons_lemma, 
filter_nil_lemma, 
fset-pair_wf, 
bfalse_wf, 
and_wf, 
isl_wf, 
btrue_wf, 
btrue_neq_bfalse, 
assert-deq-f-subset, 
not_wf, 
f-subset_wf, 
false_wf, 
equal-wf-T-base, 
null_nil_lemma, 
member-fset-singleton, 
member-fset-pair
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
unionEquality, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hyp_replacement, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
setElimination, 
rename, 
independent_functionElimination, 
productElimination, 
productEquality, 
independent_isectElimination, 
setEquality, 
functionExtensionality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
universeEquality, 
inlEquality, 
inrEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
addLevel, 
impliesFunctionality, 
functionEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(face-lattice(T;eq))].    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}u.\{\{u\}\}"(s))"(x)))
Date html generated:
2017_10_05-AM-00_40_21
Last ObjectModification:
2017_07_28-AM-09_16_00
Theory : lattices
Home
Index