Nuprl Lemma : no-retraction-case-0

[k:ℕ]. ∀[K:0-dim-complex].  (0 < ||K||  retraction(|K|;rn-prod-metric(k);|∂(K)|)))


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) retraction: retraction(X;d;A) length: ||as|| nat: less_than: a < b uall: [x:A]. B[x] not: ¬A implies:  Q natural_number: $n rat-complex-boundary: (K) rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  retraction: retraction(X;d;A) so_apply: x[s] so_lambda: λ2x.t[x] prop: satisfiable_int_formula: satisfiable_int_formula(fmla) ge: i ≥  lelt: i ≤ j < k int_seg: {i..j-} so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] it: nil: [] all: x:A. B[x] uimplies: supposing a select: L[n] exists: x:A. B[x] l_exists: (∃x∈L. P[x]) subtype_rel: A ⊆B false: False not: ¬A less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: rational-cube-complex: n-dim-complex rat-cube-complex-polyhedron: |K| member: t ∈ T implies:  Q uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf exists_wf subtype_rel_sets_simple metric-on-subtype rn-prod-metric_wf in-rat-cube_wf not_wf rat-cube-complex-polyhedron_wf retraction_wf member-not rat-cube-complex-polyhedron-inhabited l_exists_wf_nil real-vec_wf int_formula_prop_wf int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma istype-int intformle_wf itermConstant_wf itermVar_wf intformless_wf intformand_wf full-omega-unsat nat_properties int_seg_properties length_of_nil_lemma istype-base stuck-spread istype-nat istype-le istype-void rational-cube-complex_wf rational-cube_wf length_wf istype-less_than rat-complex-boundary-0-dim
Rules used in proof :  productIsType promote_hyp closedConclusion applyEquality setEquality functionIsType setIsType because_Cache dependent_functionElimination int_eqEquality dependent_pairFormation_alt approximateComputation isect_memberEquality_alt independent_isectElimination baseClosed productElimination independent_functionElimination lambdaEquality_alt voidElimination sqequalRule independent_pairFormation dependent_set_memberEquality_alt universeIsType rename setElimination natural_numberEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:0-dim-complex].    (0  <  ||K||  {}\mRightarrow{}  (\mneg{}retraction(|K|;rn-prod-metric(k);|\mpartial{}(K)|)))



Date html generated: 2019_10_30-AM-10_13_27
Last ObjectModification: 2019_10_29-PM-01_34_03

Theory : real!vectors


Home Index