Nuprl Lemma : rccp-dist-0
∀[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[x:ℝ^k].  uiff(dist(x, |K|) = r0;x ∈ |K|)
Proof
Definitions occuring in Statement : 
rccp-dist: dist(x, |K|)
, 
rat-cube-complex-polyhedron: |K|
, 
real-vec: ℝ^n
, 
req: x = y
, 
int-to-real: r(n)
, 
length: ||as||
, 
nat: ℕ
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
natural_number: $n
, 
rational-cube-complex: n-dim-complex
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
respects-equality: respects-equality(S;T)
, 
so_apply: x[s]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
rat-cube-complex-polyhedron: |K|
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rccp-dist: dist(x, |K|)
, 
rational-cube-complex: n-dim-complex
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-nat, 
length_wf, 
istype-less_than, 
rational-cube-complex_wf, 
real-vec_wf, 
req_witness, 
int-to-real_wf, 
rccp-dist_wf, 
req_wf, 
l_member_wf, 
in-rat-cube_wf, 
rational-cube_wf, 
l_exists_wf, 
not_wf, 
respects-equality-set-trivial, 
rccp-compact_wf, 
rat-cube-complex-polyhedron-metric-subspace, 
rat-cube-complex-polyhedron_wf, 
mcomplete-rn-prod-metric, 
rn-prod-metric_wf, 
compact-dist-zero-in-complete
Rules used in proof : 
isectIsTypeImplies, 
isect_memberEquality_alt, 
independent_pairEquality, 
promote_hyp, 
natural_numberEquality, 
independent_isectElimination, 
inhabitedIsType, 
setIsType, 
lambdaEquality_alt, 
universeIsType, 
equalityIstype, 
axiomEquality, 
sqequalRule, 
equalitySymmetry, 
equalityTransitivity, 
isect_memberFormation_alt, 
independent_pairFormation, 
productElimination, 
rename, 
setElimination, 
independent_functionElimination, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
because_Cache, 
thin, 
isectElimination, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[x:\mBbbR{}\^{}k].    uiff(dist(x,  |K|)  =  r0;x  \mmember{}  |K|)
Date html generated:
2019_10_31-AM-06_04_20
Last ObjectModification:
2019_10_30-PM-04_27_41
Theory : real!vectors
Home
Index