Nuprl Lemma : rccp-dist-0

[k,n:ℕ]. ∀[K:{K:n-dim-complex| 0 < ||K||} ]. ∀[x:ℝ^k].  uiff(dist(x, |K|) r0;x ∈ |K|)


Proof




Definitions occuring in Statement :  rccp-dist: dist(x, |K|) rat-cube-complex-polyhedron: |K| real-vec: ^n req: y int-to-real: r(n) length: ||as|| nat: less_than: a < b uiff: uiff(P;Q) uall: [x:A]. B[x] member: t ∈ T set: {x:A| B[x]}  natural_number: $n rational-cube-complex: n-dim-complex
Definitions unfolded in proof :  rev_implies:  Q respects-equality: respects-equality(S;T) so_apply: x[s] prop: so_lambda: λ2x.t[x] rat-cube-complex-polyhedron: |K| uimplies: supposing a uiff: uiff(P;Q) and: P ∧ Q iff: ⇐⇒ Q rccp-dist: dist(x, |K|) rational-cube-complex: n-dim-complex implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat length_wf istype-less_than rational-cube-complex_wf real-vec_wf req_witness int-to-real_wf rccp-dist_wf req_wf l_member_wf in-rat-cube_wf rational-cube_wf l_exists_wf not_wf respects-equality-set-trivial rccp-compact_wf rat-cube-complex-polyhedron-metric-subspace rat-cube-complex-polyhedron_wf mcomplete-rn-prod-metric rn-prod-metric_wf compact-dist-zero-in-complete
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt independent_pairEquality promote_hyp natural_numberEquality independent_isectElimination inhabitedIsType setIsType lambdaEquality_alt universeIsType equalityIstype axiomEquality sqequalRule equalitySymmetry equalityTransitivity isect_memberFormation_alt independent_pairFormation productElimination rename setElimination independent_functionElimination hypothesis hypothesisEquality dependent_functionElimination because_Cache thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[k,n:\mBbbN{}].  \mforall{}[K:\{K:n-dim-complex|  0  <  ||K||\}  ].  \mforall{}[x:\mBbbR{}\^{}k].    uiff(dist(x,  |K|)  =  r0;x  \mmember{}  |K|)



Date html generated: 2019_10_31-AM-06_04_20
Last ObjectModification: 2019_10_30-PM-04_27_41

Theory : real!vectors


Home Index