Nuprl Lemma : rat-cube-complex-polyhedron-metric-subspace

[k:ℕ]. ∀[K:ℚCube(k) List].  metric-subspace(ℝ^k;rn-prod-metric(k);|K|)


Proof




Definitions occuring in Statement :  rat-cube-complex-polyhedron: |K| rn-prod-metric: rn-prod-metric(n) real-vec: ^n metric-subspace: metric-subspace(X;d;A) list: List nat: uall: [x:A]. B[x] rational-cube: Cube(k)
Definitions unfolded in proof :  metric-subspace: metric-subspace(X;d;A) and: P ∧ Q iff: ⇐⇒ Q guard: {T} rev_implies:  Q false: False not: ¬A implies:  Q all: x:A. B[x] uimplies: supposing a so_apply: x[s] prop: so_lambda: λ2x.t[x] rat-cube-complex-polyhedron: |K| member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-nat list_wf rat-cube-complex-polyhedron_wf strong-subtype_witness meq_wf istype-void in-rat-cube_functionality iff_weakening_uiff l_exists_functionality l_member_wf in-rat-cube_wf rational-cube_wf l_exists_wf not_wf rn-prod-metric_wf real-vec_wf set-metric-subspace
Rules used in proof :  isectIsTypeImplies isect_memberEquality_alt functionIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality independent_pairEquality inhabitedIsType functionIsType voidElimination productElimination because_Cache dependent_functionElimination independent_functionElimination lambdaFormation_alt independent_isectElimination universeIsType setIsType rename setElimination lambdaEquality_alt sqequalRule hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[K:\mBbbQ{}Cube(k)  List].    metric-subspace(\mBbbR{}\^{}k;rn-prod-metric(k);|K|)



Date html generated: 2019_10_31-AM-06_04_04
Last ObjectModification: 2019_10_30-PM-04_25_58

Theory : real!vectors


Home Index