Nuprl Lemma : compact-dist-zero-in-complete

[X:Type]
  ∀d:metric(X)
    (mcomplete(X with d)
     (∀[A:Type]. (metric-subspace(X;d;A)  (∀c:mcompact(A;d). ∀x:X.  (dist(x;A) r0 ⇐⇒ x ∈ A)))))


Proof




Definitions occuring in Statement :  compact-dist: dist(x;A) mcompact: mcompact(X;d) mcomplete: mcomplete(M) metric-subspace: metric-subspace(X;d;A) mk-metric-space: with d metric: metric(X) req: y int-to-real: r(n) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q member: t ∈ T natural_number: $n universe: Type
Definitions unfolded in proof :  sq_exists: x:A [B[x]] rless: x < y m-closed-subspace: m-closed-subspace(X;d;A) mcompact: mcompact(X;d) label: ...$L... t top: Top false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) or: P ∨ Q guard: {T} rneq: x ≠ y nat_plus: + exists: x:A. B[x] istype: istype(T) metric-subspace: metric-subspace(X;d;A) subtype_rel: A ⊆B respects-equality: respects-equality(S;T) rev_implies:  Q prop: iff: ⇐⇒ Q uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) implies:  Q all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  req_weakening mdist-same rless_functionality int_term_value_mul_lemma itermMultiply_wf rless-int-fractions2 rleq_wf rleq_weakening_rless istype-base int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma istype-void int_formula_prop_and_lemma istype-int itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf full-omega-unsat decidable__lt nat_plus_properties rless-int rdiv_wf mdist_wf rless_wf nat_plus_wf istype-universe metric_wf mk-metric-space_wf mcomplete_wf metric-subspace_wf mcompact_wf metric-on-subtype req_witness int-to-real_wf compact-dist_wf req_wf compact-dist-zero strong-subtype-iff-respects-equality m-closed-iff-complete
Rules used in proof :  multiplyEquality sqequalBase voidElimination isect_memberEquality_alt int_eqEquality dependent_pairFormation_alt approximateComputation unionElimination inrFormation_alt rename setElimination closedConclusion productIsType functionIsType universeEquality instantiate applyEquality inhabitedIsType functionIsTypeImplies equalitySymmetry equalityTransitivity axiomEquality lambdaEquality_alt independent_pairEquality equalityIstype sqequalRule promote_hyp independent_pairFormation natural_numberEquality universeIsType because_Cache independent_isectElimination productElimination independent_functionElimination dependent_functionElimination lambdaFormation_alt hypothesisEquality thin isectElimination sqequalHypSubstitution hypothesis isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution extract_by_obid introduction cut

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcomplete(X  with  d)
        {}\mRightarrow{}  (\mforall{}[A:Type]
                    (metric-subspace(X;d;A)  {}\mRightarrow{}  (\mforall{}c:mcompact(A;d).  \mforall{}x:X.    (dist(x;A)  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mmember{}  A)))))



Date html generated: 2019_10_31-AM-05_59_36
Last ObjectModification: 2019_10_30-PM-04_11_03

Theory : reals


Home Index