Nuprl Lemma : compact-dist-zero-in-complete
∀[X:Type]
  ∀d:metric(X)
    (mcomplete(X with d)
    
⇒ (∀[A:Type]. (metric-subspace(X;d;A) 
⇒ (∀c:mcompact(A;d). ∀x:X.  (dist(x;A) = r0 
⇐⇒ x ∈ A)))))
Proof
Definitions occuring in Statement : 
compact-dist: dist(x;A)
, 
mcompact: mcompact(X;d)
, 
mcomplete: mcomplete(M)
, 
metric-subspace: metric-subspace(X;d;A)
, 
mk-metric-space: X with d
, 
metric: metric(X)
, 
req: x = y
, 
int-to-real: r(n)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
sq_exists: ∃x:A [B[x]]
, 
rless: x < y
, 
m-closed-subspace: m-closed-subspace(X;d;A)
, 
mcompact: mcompact(X;d)
, 
label: ...$L... t
, 
top: Top
, 
false: False
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
nat_plus: ℕ+
, 
exists: ∃x:A. B[x]
, 
istype: istype(T)
, 
metric-subspace: metric-subspace(X;d;A)
, 
subtype_rel: A ⊆r B
, 
respects-equality: respects-equality(S;T)
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
req_weakening, 
mdist-same, 
rless_functionality, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
rless-int-fractions2, 
rleq_wf, 
rleq_weakening_rless, 
istype-base, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_and_lemma, 
istype-int, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
full-omega-unsat, 
decidable__lt, 
nat_plus_properties, 
rless-int, 
rdiv_wf, 
mdist_wf, 
rless_wf, 
nat_plus_wf, 
istype-universe, 
metric_wf, 
mk-metric-space_wf, 
mcomplete_wf, 
metric-subspace_wf, 
mcompact_wf, 
metric-on-subtype, 
req_witness, 
int-to-real_wf, 
compact-dist_wf, 
req_wf, 
compact-dist-zero, 
strong-subtype-iff-respects-equality, 
m-closed-iff-complete
Rules used in proof : 
multiplyEquality, 
sqequalBase, 
voidElimination, 
isect_memberEquality_alt, 
int_eqEquality, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
inrFormation_alt, 
rename, 
setElimination, 
closedConclusion, 
productIsType, 
functionIsType, 
universeEquality, 
instantiate, 
applyEquality, 
inhabitedIsType, 
functionIsTypeImplies, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
lambdaEquality_alt, 
independent_pairEquality, 
equalityIstype, 
sqequalRule, 
promote_hyp, 
independent_pairFormation, 
natural_numberEquality, 
universeIsType, 
because_Cache, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
lambdaFormation_alt, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
hypothesis, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
extract_by_obid, 
introduction, 
cut
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcomplete(X  with  d)
        {}\mRightarrow{}  (\mforall{}[A:Type]
                    (metric-subspace(X;d;A)  {}\mRightarrow{}  (\mforall{}c:mcompact(A;d).  \mforall{}x:X.    (dist(x;A)  =  r0  \mLeftarrow{}{}\mRightarrow{}  x  \mmember{}  A)))))
Date html generated:
2019_10_31-AM-05_59_36
Last ObjectModification:
2019_10_30-PM-04_11_03
Theory : reals
Home
Index