Nuprl Lemma : accelerate-real-strong-regular
∀k:ℕ+. ∀x:ℝ.  strong-regular-int-seq(2 * k;(2 * k) + 1;accelerate(k;x))
Proof
Definitions occuring in Statement : 
accelerate: accelerate(k;f)
, 
real: ℝ
, 
strong-regular-int-seq: strong-regular-int-seq(a;b;f)
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
multiply: n * m
, 
add: n + m
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
strong-regular-int-seq: strong-regular-int-seq(a;b;f)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
implies: P 
⇒ Q
, 
regular-int-seq: k-regular-seq(f)
, 
accelerate: accelerate(k;f)
, 
squash: ↓T
, 
uimplies: b supposing a
, 
has-value: (a)↓
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
top: Top
, 
and: P ∧ Q
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
int_nzero: ℤ-o
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
sq_stable__le, 
absval_wf, 
subtract_wf, 
accelerate_wf, 
real-regular, 
regular-int-seq_wf, 
nat_plus_wf, 
real_wf, 
value-type-has-value, 
int-value-type, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
absval_pos, 
nat_plus_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
iff_weakening_equal, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-base, 
decidable__equal_int, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
mul_nat_plus, 
less_than_wf, 
nequal_wf, 
rem_bounds_absval, 
nat_wf, 
absval_mul, 
absval_nat_plus, 
equal-wf-T-base, 
div_rem_sum2, 
itermAdd_wf, 
int_term_value_add_lemma, 
le_functionality, 
int-triangle-inequality, 
le_weakening, 
mul_cancel_in_le, 
multiply-is-int-iff, 
add-is-int-iff, 
false_wf, 
set_subtype_base, 
absval-non-neg, 
nat_plus_subtype_nat, 
add_functionality_wrt_le, 
int-triangle-inequality2, 
add_functionality_wrt_eq, 
mul_preserves_le
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
multiplyEquality, 
natural_numberEquality, 
because_Cache, 
hypothesis, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
functionExtensionality, 
sqequalRule, 
addEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
intEquality, 
independent_isectElimination, 
callbyvalueReduce, 
instantiate, 
cumulativity, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
productElimination, 
baseApply, 
closedConclusion, 
divideEquality, 
remainderEquality, 
pointwiseFunctionality, 
promote_hyp, 
equalityUniverse, 
levelHypothesis
Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.    strong-regular-int-seq(2  *  k;(2  *  k)  +  1;accelerate(k;x))
Date html generated:
2017_10_02-PM-07_13_39
Last ObjectModification:
2017_09_20-PM-05_08_49
Theory : reals
Home
Index