Nuprl Lemma : accelerate-real-strong-regular

k:ℕ+. ∀x:ℝ.  strong-regular-int-seq(2 k;(2 k) 1;accelerate(k;x))


Proof




Definitions occuring in Statement :  accelerate: accelerate(k;f) real: strong-regular-int-seq: strong-regular-int-seq(a;b;f) nat_plus: + all: x:A. B[x] multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] strong-regular-int-seq: strong-regular-int-seq(a;b;f) real: uall: [x:A]. B[x] member: t ∈ T nat_plus: + prop: subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q regular-int-seq: k-regular-seq(f) accelerate: accelerate(k;f) squash: T uimplies: supposing a has-value: (a)↓ nat: decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q sq_type: SQType(T) nequal: a ≠ b ∈  less_than: a < b less_than': less_than'(a;b) int_nzero: -o rev_uimplies: rev_uimplies(P;Q) ge: i ≥  le: A ≤ B uiff: uiff(P;Q) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  sq_stable__le absval_wf subtract_wf accelerate_wf real-regular regular-int-seq_wf nat_plus_wf real_wf value-type-has-value int-value-type subtype_base_sq int_subtype_base equal_wf squash_wf true_wf absval_pos nat_plus_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermMultiply_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf iff_weakening_equal intformeq_wf int_formula_prop_eq_lemma equal-wf-base decidable__equal_int itermSubtract_wf int_term_value_subtract_lemma mul_nat_plus less_than_wf nequal_wf rem_bounds_absval nat_wf absval_mul absval_nat_plus equal-wf-T-base div_rem_sum2 itermAdd_wf int_term_value_add_lemma le_functionality int-triangle-inequality le_weakening mul_cancel_in_le multiply-is-int-iff add-is-int-iff false_wf set_subtype_base absval-non-neg nat_plus_subtype_nat add_functionality_wrt_le int-triangle-inequality2 add_functionality_wrt_eq mul_preserves_le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution setElimination thin rename cut introduction extract_by_obid isectElimination multiplyEquality natural_numberEquality because_Cache hypothesis applyEquality hypothesisEquality dependent_set_memberEquality functionExtensionality sqequalRule addEquality independent_functionElimination imageMemberEquality baseClosed imageElimination intEquality independent_isectElimination callbyvalueReduce instantiate cumulativity lambdaEquality equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination unionElimination approximateComputation dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality independent_pairFormation productElimination baseApply closedConclusion divideEquality remainderEquality pointwiseFunctionality promote_hyp equalityUniverse levelHypothesis

Latex:
\mforall{}k:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.    strong-regular-int-seq(2  *  k;(2  *  k)  +  1;accelerate(k;x))



Date html generated: 2017_10_02-PM-07_13_39
Last ObjectModification: 2017_09_20-PM-05_08_49

Theory : reals


Home Index