Nuprl Lemma : avoid-real

a,b,x:ℝ.  ((a < b)  (∃a',b':ℝ((a ≤ a') ∧ (b' ≤ b) ∧ (a' < b') ∧ ((x < a') ∨ (b' < x)))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y real: all: x:A. B[x] exists: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q cand: c∧ B member: t ∈ T prop: uall: [x:A]. B[x] int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A uimplies: supposing a sq_type: SQType(T) guard: {T} false: False rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  rless_wf real_wf int-rdiv_wf subtype_base_sq int_subtype_base equal-wf-base true_wf nequal_wf radd_wf int-rmul_wf rdiv_wf int-to-real_wf rless-int rmul_wf rmul_preserves_rless rless_functionality req_weakening int-rdiv-req rdiv_functionality radd_functionality int-rmul-req rmul_comm rmul-rdiv-cancel2 radd-preserves-rless rminus_wf radd-zero-both rmul-one-both rmul-zero-both rmul_functionality req_transitivity radd-int rminus-as-rmul req_inversion rmul-distrib2 radd-assoc radd-rminus-both radd-rminus-assoc radd-ac radd_comm rless-cases rleq_weakening_equal rless_transitivity2 rleq_weakening_rless rleq_wf or_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut independent_pairFormation hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality addLevel instantiate cumulativity intEquality independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination baseClosed because_Cache sqequalRule inrFormation productElimination imageMemberEquality minusEquality addEquality levelHypothesis unionElimination dependent_pairFormation productEquality lambdaEquality inlFormation

Latex:
\mforall{}a,b,x:\mBbbR{}.    ((a  <  b)  {}\mRightarrow{}  (\mexists{}a',b':\mBbbR{}.  ((a  \mleq{}  a')  \mwedge{}  (b'  \mleq{}  b)  \mwedge{}  (a'  <  b')  \mwedge{}  ((x  <  a')  \mvee{}  (b'  <  x)))))



Date html generated: 2016_10_26-AM-09_33_27
Last ObjectModification: 2016_08_13-AM-11_33_59

Theory : reals


Home Index