Nuprl Lemma : case-real3-req1

[f:ℕ+ ⟶ 𝔹]
  ∀[b,a:ℝ].  case-real3(a;b;f) supposing ∀n,m:ℕ+.  ((↑(f n))  (¬↑(f m))  (|(a m) m| ≤ 4)) 
  supposing ∃n:ℕ+(↑(f n))


Proof




Definitions occuring in Statement :  case-real3: case-real3(a;b;f) req: y real: absval: |i| nat_plus: + assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] subtract: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q case-real3: case-real3(a;b;f) all: x:A. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top prop: false: False real: subtype_rel: A ⊆B nat: bdd-diff: bdd-diff(f;g) le: A ≤ B less_than': less_than'(a;b) case-real3-seq: case-real3-seq(a;b;f) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b absval: |i| iff: ⇐⇒ Q rev_implies:  Q subtract: m
Lemmas referenced :  req-iff-bdd-diff case-real3_wf istype-assert accelerate-bdd-diff nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than case-real3-seq_wf req_witness nat_plus_wf istype-le absval_wf subtract_wf real_wf bool_wf bdd-diff_inversion eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot istype-false bdd-diff_functionality bdd-diff_weakening minus-one-mul add-mul-special zero-mul
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution productElimination thin extract_by_obid isectElimination hypothesisEquality sqequalRule isect_memberEquality_alt productIsType inhabitedIsType applyEquality hypothesis independent_isectElimination dependent_functionElimination dependent_set_memberEquality_alt natural_numberEquality setElimination rename unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt voidElimination universeIsType functionIsType because_Cache equalityTransitivity equalitySymmetry isectIsTypeImplies independent_pairFormation lambdaFormation_alt equalityElimination equalityIstype promote_hyp instantiate cumulativity minusEquality

Latex:
\mforall{}[f:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbB{}]
    \mforall{}[b,a:\mBbbR{}].
        case-real3(a;b;f)  =  a  supposing  \mforall{}n,m:\mBbbN{}\msupplus{}.    ((\muparrow{}(f  n))  {}\mRightarrow{}  (\mneg{}\muparrow{}(f  m))  {}\mRightarrow{}  (|(a  m)  -  b  m|  \mleq{}  4)) 
    supposing  \mexists{}n:\mBbbN{}\msupplus{}.  (\muparrow{}(f  n))



Date html generated: 2019_10_29-AM-09_37_52
Last ObjectModification: 2019_06_14-PM-03_20_01

Theory : reals


Home Index